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Abstract

Recently, the structure of spacetime was incorpdrainto the ECE equations of
electromagnetism. In this paper, the field equetiare shown to possess nonlinear terms that
appear when the metric coefficients depend on thkliev of the magnetic field. This is
investigated for the case of an infinite solenddth reasonable simplifications, the non-linear
hyperbolic partial differential equation is shownmreduce to a distorted wave equation which
offers solutions that show amplification effectsHeterodyning behaviour was observed,
corresponding to the resonance for the first stejpdvave in the solenoid core. At higher
frequencies, the magnetic field becomes asymptiytitaear in time, indicating some form of

resonant growth.
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Introduction

In previous publications [1,2,3], it was shown ttteg standard ECE electromagnetic theory for a
single polarization is equivalent in a mathemat®ahse to traditional electromagnetic theory
whenever the vector potential is a continuous fioncdf time. We note that this equivalence is
superficial because the ECE theory of electromagmets not restricted to the Minkowski
metric, the basis of Maxwellian theory. We notésbahat this continuous state is very stable
and that once a system is there, it takes a vedi@ntial that is not continuous in time to jar it

from this stability.

This suggests that devices such as the energygsasigvices developed in Mexico [4] are not
described by the original ECE theory of electronsdigm because observational data suggests
that the potentials in the device are continuoudinme. Other devices, such as the Bedini
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machine [5] and toroidal power devices [6] may haxplanation in the “first generation” ECE
theory if they can actually achieve a state whéee vector potential is not continuous. The

practicality of achieving this theoretical stateneens to be demonstrated.

A “second generation” ECE theory of electromagmetisas been introduced [7] where a
connection of the field variables was made with gtvacture of the metric. It will be shown in
this paper that this connection offers an explamator over-unity energetics in “more or less”
traditional electronic and electromechanical devid® design strategy is presented based upon
the analysis of an infinitely long solenoid whehe tmetric properties depend upon the applied
fields.

The Fidd Equations

The basic premise of this paper is that if anonalmehaviour is to be observable in a device, it
should show up as an anomaly in the electric andégnetic fields. This allows the use of the
field equations without the introduction of potefdi and spin connections as described in ECE

theory [7], except for boundary conditions thatuieg potential sources.

Paper [7] provides the basis for introducing thdrimento the ECE electromagnetic equations.
In that paper, the metric has been assumed todgowmil, with the components of the electric

displacemenb given by

Dl = eogoogllEl

D2 = EogoogzzEz , 1)
D3 = £0g00g33E3 .

In vector form, this is

D=GgE (2)

whereE is the electric intensityD is the electric displacement, afg is related to the metric

tensor through

GE = €09 g™ (3)



For notational purposes, we write
D = (D', D%, D)7, 4)
E=(EYE?E3)". (5)
Similarly for the magnetic intensity and the magnetic inductidh[7],

1 _ 1 22 33p1
H _Hog g B '

2 _ 1 11_33p2
H®=-~-g"g>B", (6)

1

H3 = _g11g2233
Ho

can be rewritten as

whereGy is related to the metric through

.. ij kk
Gif = = (8)
0
and
H = (H', H? H3)T , 9)
B = (BY,B?,B3)T . (10)

For simplicity, we will ignore additional constapblarization and magnetization effects that are

often added for completeness in traditional elestrgnetism [8].

The homogeneous field equations of ECE theory are

V-B=0, (11)
0B

z X E + E =0. (12)

The inhomogeneous equations of the ECE electroniagheory are given by



v-D=p, (13)

oD

VYxH-%

=]. (14)
Using equation (2) and equation (7), equations &h8i) (14) can be rewritten as

v-(Gg-E)=p, (15)
v (Gy B) -G Z-2E . E=) (16)

In this paper, we shall assume that diagonal elé&snainthe metric tensors vary in an amount
proportional to the work done by the electromagnégld, which when the electric field is

negligible in comparison to the magnetic field, is
Gif =~ 1+ umB - B), (17)

Gi_e.(1+¢,B - B).

Uc ande, are the permeability and permittivity of the makm the absence of electromagnetic

fields, and the termg,, ande,, are constants yet to be determined.
Infinite Solenoid

Let us now consider the case of an infinitely I@gdenoid. The solenoid has cross-sectional
geometry as illustrated in Figure 1; the outeraagionsists of the windings of the solenoid of

thicknessh, and the inner region is the core with outer radju

e

Figure1l. Solenoid Geometry



Because the core is infinite in length, and ragiailmmetrical, all functions depend upon radial

position and time only. Thus we can write for &rajrical polar coordinate system,

B =(0,0,B,(r,1)) . (18)
E = (0,Ey(r,t),0)7. (19)
Because of equation (18), Gauss’ Law, equation, {$ Butomatically satisfied.

Equations (12), Faraday’'s Law, reduces to

19(rEg) ., 9B,
r or + at

=0. (20)
Equation (13) requires that
p=0.

Finally, equation (14) becomes

a(G3%B,) 0(GE*E
- ol -y (21)

The metric properties for equation (21) are fromapn (17), which are for this situation,
G33 = #16(1 + u,B2) (22)
G2* = ¢.(1 + &,B2) . (23)
Incorporating the material properties of equati(®2® and (23) into (21) gives

3 d((1+emB2)E
“ar (Bz(l + HmBZZ)) — Hcéc % = Ucfo - (24)

Equation (24) can be simplified to

Ty Hmg Pz T 2o Tz et telo (25)



1
UcEe = 2 (26)

Equations (20) and (25) can be combined into desiaguation. To do this, we multiply equation

(25) byr and then take the derivative with respeat.to

_9 (0B _, 90 ( 0 p3)_ 10°(Ee) _ em9%(BirEg) _
or (r 6r) Hm 57 (r ar BZ) 2 orot ez orocr K 67'( 7Jo) - (27)

Using Faraday's Law, equation (20), in various feynsonverts equation (27) to a partial

differential equation irB,. If we integrate equation (20),
6BZ
rEg = —fr dr + f(t) (28)

wheref (t) is a constant of integration that can be takdvetaero forE, not to be singular at the

centre of the core.
If we take the time derivative of equation (20) get

0%(rEq) _ 9°B,
arot atz (29)

Expanding the last term of the left hand side afagipn (27), we have

02(BZrEg) _ 2 0 0BZ
2o = (B 9 (rEz) + rE, )

This expands to

82(BZrEg) _ o 072 2 dB2
ZE0) = B2 0 (rEg) + = (BD) 2 (rEg) + = (rEg 22) .

If we substitute equation (29) into the first teequation (20) into the middle term, and equation

(28) into the last term we have

02(BZrEg) _ 92B ] dB a dB% 9B
arot BZ( atzz)+E(B§)(_ra_:)+§(_a_rzfra_:dr)'

The first two terms of this expression combine

0°B G| 0B G| 0B r 0%°B3
B2 (—r—z) — (B? (—r—z)=—r—(Bz—z)=—— 2
z at? +6t( Z) ot at\"Z ot 3 at2




leaving

02%(B2rE r 02B3 o (0BZ 0B

Mz___z__( 2fr_zdr)_
arot 3 0t2 at \ ar ot

If we now substitute this and equation (20) injo&ion (27), we get

(222 + 22 ) 4 (8 ) = e )

ar ar c? ot? 3c2 0t?
(30)
Dividing this equation by and reorganizing puts this into a more traditidoam
10 3(Bz+umBz*) 1 aZ(Bz+STmBz3) &m 0 [(0B2 9B, ke O
T (rRE) - - B (G T Sdr) = = ), (31)

In this nonlinear wave equation, if the last tesnsignificantly smaller than its predecessors,

equation (31) simplifies to

li(ra(32+ﬂm323)) _iaz(Bz+£TmBz3) — Ue 9 (rje) ) (32)

ror or c? at? T roor

The traditional wave equation emerges from equaf8®) if the magnitudes of botf,, and

€, are significantly less than one (for nominal magyués ofB,).
Boundary and L oading Conditions

The electromagnetic field equations (11) through) (&re mathematically similar to the field
equations of traditional electromagnetic theoryuBaary conditions are found in any good
textbook on the subject [8].

The boundary and loading conditions as appliethi®groblem are,

* H, is continuous at the interface between the windind core. Some finite element
software based on calculus of variations technigises‘flow conditions” at an interface,

which in this case would be that the volume intlsgaver the interface of - B =0

(which is automatically satisfied), and x (G=H . B) = 0 at the interface between the

coil and the core, and the coil and the outsidérenment.

B,

P 0 at the centre of the core




Loading of the coil is provided through. If one assumes that the current density thrabgh

windings is constant, then

Jo = %@ (33)

wheren is the number of turns per unit length in the dwoik the thickness of the coil, aift) is

the current flow in the wires of the coil, assumeaiform.
Numerical Solution

Equation (31) and (32) were solved using a comrakfiiite element solve®] subject to the
loading and boundary conditions discussed in tegipus section. The factof; andsc—’;‘ grossly

imbalance the relative size of the terms in theatiqn, making the solutions prone to numerical

error. This is alleviated using the following tréorsnation:
q=", (34)
T=wt. (35)

Equations (31) and (32) then become upon subsiif{84) and (35)

10 (0(BrtumB)) _ B+ DB°) e 9 (983 o 08, _ (w0

ran (a7l - T B (SR [ q 5 dg) =~ (2) 5 (@) (36)
and

10 d(By+umBz®) a2(3z‘|'€—mBz3) _ pcfw\ 0

EE(" aq ) T om = ‘7(:)5(61]9) : (37)

The last term of equation (36) was calculated s#pbr and shown to be significantly less in
magnitude than the other terms in the equationcaBge of the limitations of the softwai‘zé,E

was taken to be spatially constant, so that

0B, _ 0Bz ¢*
fq at dq ~ ot 2

which then gives the last term approximately as



f_mi(ﬁ %d)Nmi(ﬁﬁ)
q ot 6qfq6‘rq~26‘r aq ot/ (38)

The constants for the problem were taken as “typegpected values, although at this time,
realistic estimates of,,, andy,, are not available. The following properties (in (8lits) were

used in the calculations:
5 = 0.01m

Ue = 4w 1074

. = 8.85 10712

en = 0.001

fm = 0.01

Jo = loysin(Bt)

Where
n = 1000 ,
h=0.001m,

I, = 0.001 Amperes .

For small values of%, the magnetic field is constant across the crestiem, and follows the

driving function as is shown in Figure 1.
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Figure 1. B,with sinusoidal driving function (orange: r =1,; green. r = %"; blue r =0)

For values of“’Tr0 of about two, the system becomes increasingly btestaThis happens to be

the first zero in the zeroth order Bessel functidrthe first kind, corresponding to a standing
half-wave across the diameter of the core. Thithésfirst resonant point with heterodyning
appearing in the solution. Similar behaviour basn observed previously in studies of the ECE
form of Coulomb’s Law [10]. The details of the ®@ance cannot be calculated at this time, due
to the unstable nature of the solution algorithrthis region.

For large values of‘? stability again returnsFigure 1 (e) suggests an asymptotic behaviour
for large values of “’T“’ When this occurs‘% is practically constant across the core. This

suggests that the second degree temporal ternuatieq (32) dominates i.e.

92 (Bz +sTmst)

at?

-0. (39)

The analytic solution of this equation is,

3
3 Jeem3(9c12£m(c2+t)2+4)—3c1t8m2—3c1c2£m2
V2
B, = — (40)

3 ?{/Egm
J£m3(9cf€m(c2+t)2+4)—3c1t£m2—3c1c25m2

where c¢; and ¢, are constants of integration.
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If this is written as a power series in= 3¢;7

then

B, ~a, +a,q+ - (42)
At T = 0 the fieldB, is zero, so that; = 0.

We also have that

B, ~ pclo f(x)  so that
n
B, = uclyy T (42)

This is shown in Figure 1(e) using the referencta dar the finite element calculation. The
agreement observed here is fairly strong evideacéhe validity of the solution at these higher

frequencies.

Solutions to equations (36) or (37) were attemptsithg driving functions with discontinuous
time derivatives such agsin(wt)| without success. Pulse-like driving functions suah

sin(wt)™ were analyzed successfully and the resultsrfee 6, are presented iRigure 2. This

system was more unstable than for the sinusoidaindrfunction. Even though the ten%éffqE

was zero across the core for higher frequency isolsit the computation was not stable

Heterodyning behaviour is suspected again V\#Cféris about two.
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Figure 2. B,with pulse-like driving function (orange: r =r,; green: r = r2—°; blue: r = 0)

Conclusions

Amplification of the magnetic field was observed the infinitely long solenoid, when the
metric coefficients were not of unit value, and elegled upon the magnitude of the magnetic
field. A resonant frequency is indicated, but igdue could not be determined precisely because

of numerical instabilities that occurred when sedyithe equations. Heterodyning behaviour
occurs when% ~ 2. This is the resonance for the first standing wé&ienilar behaviour has
been observed previously in studies of the ECE fori@oulomb’s Law [10]. Further, at higher

frequencies, the solution become asymptoticallgdmin time, perhaps indicating some form of

resonant growth.



14

References

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]

D. Lindstrom, H. Eckardt; “Reduction of the ECHeory of Electromagnetism to the

Maxwell-Heaviside Theory”, www.aias.us

D. Lindstrom, H. Eckardt; “Reduction of the ECHeory of Electromagnetism to the

Maxwell-Heaviside Theory Part II”, www.aias.us

D. Lindstrom, H. Eckardt; “Reduction of the ECHheory of Electromagnetism to the

Maxwell-Heaviside Theory Part 1117, www.aias.us

www.ET3M.net

M. Evans, H. Eckardt; “Spin Connection Resorantthe Bedini Machine”; Paper #94,

WWW.aias.us

Mark Steven'’s Torroidal Power Unit; www.thewatngine.com/pdf/stevensmark

Myron W. Evans; “Metric Based ECE Theory of Eile@dynamics”;, Paper #167,

WWWw.aias.us
J. D. Jackson; “Classical Electrodynamics”; dafiley & Sons, %' edition (1999)

FlexPDE Version 6 (studentyww.pdesolutions.com

Myron W. Evans, H. Eckardt; “Development®ifh Connection Resonance in Coulomb

Law”, AIAS Paper #92, www.aias.us




