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Abstract 
 

The ECE definitions of electric intensity and magnetic induction are assumed for the static case 
of single polarization, and assumed to be governed by Maxwell-like field equations. If these 
equations are constrained by the ECE equations of electromagnetic symmetry, no non-
Maxwellian scenarios other that the trivial solution are possible for ECE electromagnetics for a 
single polarization given certain assumptions on the continuity of the potentials. 
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1 Introduction 
 

It has been shown in a previous publication [1], that the ECE theory of electromagnetism reduces 
to the standard classical electromagnetic theory when 

��� = ��           (1-1) 

which is equivalent to (see Appendix I) 

� × � = 0.           (1-2)  

With these assumptions, from a mathematical perspective, classical static electromagnetism is a 
subset of the static ECE equations.  If the Maxwellian state is indicated by a lack of torsion, then 
there is no equivalence whatsoever except for the trivial state. 

In what follows, it will be assumed that 

��� ≠ �� so that 

� × � ≠ �.   

It will also be assumed that neither �, �, ��, nor � are zero globally.  These special cases will be 
dealt with after the main discussion. 

 

2 Static ECE Electromagnetism 
 

The static field equations for ECE electromagnetism for a single polarization are [2] 

∇ ∙ �=0           (2-1) 

∇ × � = 0           (2-2) 

∇ ∙ � = �
�           (2-3) 

∇ × � = ��           (2-4) 

For static electromagnetism, the definition of electric intensity in ECE theory for a single 
polarization is [2] 

� = −�� − ��� + ��.         (2-5)  

The ECE definition for the magnetic induction is [2] 
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� = ∇ × � − � × �.          (2-6)  

As a result of fundamental antisymmetries in Cartan geometry, new equations that constrain the 
above fields are introduced.  The electric antisymmetry equation is for static fields [3],  

−∇� + ��� + �� = 0         (2-7) 

and correspondingly, the magnetic antisymmetry equation is for static fields [3], 

���
���

+ ���
���

+ ��� + � �� = 0        (2-8) 

where i, j, k is a permutation of the coordinate indices.  E is the electric intensity, B is the 

magnetic induction, A is the magnetic vector potential, φ is the electric scalar potential, ωωωω is the 

vector spin connection and oω  is the scalar spin connection.  We will assume in this analysis that 

the active medium is a vacuum so that complications introduced when using a more complex 
medium are avoided. 

The electric intensity as given by equation (2-5) has two equivalent formulations when equation 
(2-7) is applied [3], namely 

� = −2�� + 2��          (2-9)  

and 

� = −2���           (2-10)  

Similar expressions can be given for the magnetic induction by adding and subtracting (2-8) 
from (2-6) in turn to get, in indicial form, for each  # = 1,2,3 with # ≠ & ≠ ' 

()
* = − ���

���
− ���            (2-11) 

()
* = ���

���
+ � ��           (2-12) 

As will be discussed in a future publication [4], there is never truly a static ECE field.  The 
observable fields “float” upon a non-static vacuum field, and appear to demonstrate no 
interaction with the vacuum as long as the Maxwell-like linear field equations are satisfied.  In 
fact, the observable potentials should be added to the vacuum solution when a potential 
representation is considered.  This introduces a temporal component in all solutions that we shall 
ignore in this publication. 

From Faraday’s Law, equation (2-2) using equations (2-9) and (2-10) becomes 

� × �� = 0            (2-13)  
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and 

� × ��� = 0 .          (2-14)  

We can write 

�+ = ���            (2-15)  

and 

�, = ��            (2-16) 

with two new scalar potentials + and ,. Substituting (2-15) and (2-16) into (2-7) gives 

�, = �� − �+.          (2-17) 

Gauss’s Law acting on (2-6) becomes 

∇ ∙ -� × �. = 0           (2-18) 

Upon substituting equations (2-15), (2-16) and) into (2-18) gives 

∇ ∙ -� × �. = ∇ ∙ /01
2 × 03

45
6 . 

Noting (2-17),  

∇ ∙ /01
2 × 03

45
6 = ∇ ∙ /02703

2 × 03
45

6 . 

Since 

�+ × �+ = 0  

we have 

∇ ∙ /02703
2 × 03

45
6 = ∇ ∙ /�89-�. × 03

45
6 . 

Using the vector identity 

� ∙ -: × ;. = ; ∙ � × : − : ∙ � × ; 

we have 

∇ ∙ /�89-�. × 03
45

6  = 03
45

∙ � × �89-�. − �89-�. ∙ � × 03
45

 . 

The first term on the right hand side vanishes identically.  Further, since 
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� × =: = =� × : + �= × :  for a scalar =, we have 

� × 03
45

= � / >
45

6 × �+ + >
45

� × �+ = − 045×03
45?   

We thus have that 

∇ ∙ -� × �. = −�89-�. ∙ 045×03
45? = 0 .       (2-19) 

Because 

: ∙ -; × @. = ; ∙ -@ × :. = @ ∙ -: × ;. 

equation (2-19) has the following alternate forms 

02∙A045×03B
245? = 045∙A03×02B

245? = 03∙A02×045B
245? = 0 .      (2-20) 

An examination of (2-20) suggests three possible solutions if neither �� nor � are zero. 

i. ��,  ���,   and  �+ ( i.e. A ) are all parallel, because all cross-product terms are zero, 

ii. ��, ���,    and   �+ are mutually perpendicular, since all dot product term are zero,  or 
iii.  one or more of the gradients are zero. 

 
The first option has 

�� × � = 0 . 

Therefore, according to (2-7), � is parallel to � and � × � = 0 from which the fields are 
Maxwellian. 

 
For second option, from equation (2-7) 
�� × � = �� × � 
gives us that ��, �� and � are co-planar  but perpendicular to � × � (see Figure 1). 

 
 
 
 
 
Figure 1 
 
Since �� is perpendicular to �+ and both must be perpendicular to  � × � and equation  
(2-17) requires that 

� × � 
       � �� 

�� 
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�� = �� − �+            (2-21) 

which must also be perpendicular to � × �, then the only possible direction for �� is 
perpendicular to both �� and �+  with the three terms forming the mutually perpendicular axes 

of a 3D coordinate system.  This is an impossibility because of perpendicularity with � × �    
unless one of the terms is zero.  This leads us to the third option, unless   

�� = 0 
in which case 
� × � = 0. 
 
The third option  

a. �� = 0  has  � × � = �� × � = 0 from which the fields are Maxwellian. 

b. �+ = 0  has  � = 0 from which both E and B are zero. 

c. ��� = 0 has  �� = CD9EFG9F  with the result that  � × � = 0 from (2-14).   

 
For option “c”, Gauss’s Law has 

∇ ∙ -� × �. = � ∙ A∇ × �B = 0, 

but 

∇ × � = >
2 � × �� − ∇H

H × � . 

Therefore, because of Faraday’s Law, 

� ∙ A∇ × �B = − 03
45

∙ /∇H
H × �6 = 0 . 

Either one or more of the terms are zero, or they are mutually perpendicular.  These options have 
all been dealt with in the above discussion. 
 
Consider now the special case of one or more of �, �, ��, and � being zero globally.  Firstly, it 
has been argued [5] that �� = 0  and � = 0    are not possible solutions to the ECE equations of 
electromagnetism because the electromagnetic field, even the vacuum state, is a continually 
rotating spacetime.  The only possible exception would be when both the scalar and vector 
magnetic potentials are zero. 
 
However, if � = 0  globally then   �� = 0    then   � = 0  so that � = 0 and � = 0. 

If � = 0  then � = 0   and  � = 0.   
Thus if any of the potentials vanish, the solution is the zero potential state. 

It has been shown also that in general, for potentials with continuous second derivatives, that the 
only static solutions to the ECE engineering equations are equivalent to those given by 
traditional electromagnetic theory [1]. This fails to be true under two conditions, namely when 
�� ≠ 0 but  � = 0, and when at least one of the potentials is multi-valued. 
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Let us examine the situation where �� ≠ 0 but � = 0.   

By equation (1-1) if � is real, and non-singular, then 

� = −2��,           (2-22) 

that is to say, � will be double the value of the corresponding Maxwellian value at that particular 
point in space.   

To investigate this particular case further, consider E as a function of the scalar potential, then by 
equation (2-9) 

�-� + I�. = −2∇-� + I�. + 2�-� + I�.-� + I�.     (2-23) 

If we expand � about �, then to first order in I�, 

�-� + I�. = −2∇-�. − 2∇-I�. + 2�� + 2�I� + 2 J�
J2 �I�    (2-24) 

Writing 

��
�2 = limN2→�

�-2PN2.7�-2.
N2 = lim

N2→�
/−2∇A89-I�.B + � + 2 J�

J2 �6   (2-25) 

At � = 0,  

��
�2 = lim

N2→�
-−2�-89-I�. . + �.        (2-26) 

if 
J�
J2 is finite. 

In general, for 
��
�2 to be finite at � = 0 , � must be infinite. 

For B to be finite, then by equation (2-6) 

� × � = 0           (2-27) 

indicating a Maxwellian type of solution. 

The situation where the potentials are multi-valued will be dismissed for the moment on the 
grounds that they can be described with sufficient accuracy by an appropriate series of 
orthogonal functions, and so have well defined derivatives to any desired levels. 
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3 Discussion 
 
It has been shown in the previous discussion that all static ECE electromagnetic fields are either 
trivial (the vacuum state, or the even lower state of zero potentials) or Maxwellian.  Enough 
continuity of the variables had to be assumed to provide values for the Maxwell field equations.  
This requires that    �    and  �  have spatial first derivatives that are defined everywhere and are 
continuous so that its second degree derivatives exist.   The products �� and ��� need to be 
defined everywhere and continuous to that their spatial derivatives can be formed. 
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Appendix I 
 

Proof that � × � = 0 is equivalent to  ��� = ��.        

From the electric antisymmetry equation (2-7) 

� × � = 0  is the same as 

∇� × � = 0 . 

If none of the variables in these two expressions are zero, then �, ∇�, and � are parallel.  We 

can then write 

� = ' � . 

If we substitute this into Faraday’s Law, 

∇ × �� = ∇ × ' �� = ∇-' �. × � + ' �∇ ×  � = 0 

or 

∇ ×  � = −∇89-' �. ×  � .         (A-1) 

The second form for the electric intensity gives Faraday’s Law as 

∇ × -���. = ∇�� × � + ��∇ × � = 0  

or 

∇ × � = −∇89-��. ×  � . 

Comparing this to (A-1) we see that 

' � = �� 

from which follows 

��� = ' �� = ��. 

 


