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Abstract

The ECE definitions of electric intensity and matgmenduction are assumed for the static case
of single polarization, and assumed to be govelmedlaxwell-like field equations. If these
equations are constrained by the ECE equations ledtremagnetic symmetry, no non-
Maxwellian scenarios other that the trivial solatiare possible for ECE electromagnetics for a
single polarization given certain assumptions @dbntinuity of the potentials.
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1 Introduction

It has been shown in a previous publication [14f the ECE theory of electromagnetism reduces
to the standard classical electromagnetic theomrwh

(L)()A == wd) (1'1)
which is equivalent to (see Appendix I)
wXxXA=0. (1-2)

With these assumptions, from a mathematical petisgeclassical static electromagnetism is a
subset of the static ECE equations. If the Maxaelstate is indicated by a lack of torsion, then
there is no equivalence whatsoever except forrihialtstate.

In what follows, it will be assumed that
woA # w¢p  so that
wXA+0.

It will also be assumed that neithgprA, w,, nor w are zero globally. These special cases will be
dealt with after the main discussion.

2 Static ECE Electromagnetism

The static field equations for ECE electromagnefigna single polarization are [2]

V- B=0 (2-1)
VXE=0 (2-2)
V-E=Z (2-3)
VXB =y (2-4)

For static electromagnetism, the definition of #&iecintensity in ECE theory for a single
polarization is [2]

E=-Vd—wA+ w. (2-5)

The ECE definition for thenagnetic inductiors [2]



B=VxA-wxA. (2-6)

As a result of fundamental antisymmetries in Cagaametry, new equations that constrain the
above fields are introduced. The electric antisgtmpnequation is for static fields [3],

—Vo + woA + w = 0 (2-7)

and correspondingly, the magnetic antisymmetry goias for static fields [3],

0A, , 0A; _
o a—xi + wjAy + wpd; =0 (2-8)
wherel, |, k is a permutation of the coordinate indiceR. is the electric intensityB is the
magnetic inductionA is the magnetic vector potentigljs the electric scalar potentiad, is the
vector spin connection ang, is the scalar spin connection. We will assuminig analysis that
the active medium is a vacuum so that complicatiatroduced when using a more complex

medium are avoided.

The electric intensity as given by equation (2-83 kwo equivalent formulations when equation
(2-7) is applied [3], namely

E=-2V¢+2w¢ (2-9)
and
E = —2wyA (2-10)

Similar expressions can be given for the magnetituction by adding and subtracting (2-8)
from (2-6) in turn to get, in indicial form, forela i = 1,2,3 withi #j # k

B; aAj

> = —a—xk — (U]Ak (2-11)
Bi _ 04k . -
2= Tt o (2-12)

As will be discussed in a future publication [4jete is never truly a static ECE field. The
observable fields “float” upon a non-static vacudield, and appear to demonstrate no
interaction with the vacuum as long as the Maxwied-linear field equations are satisfied. In
fact, the observable potentials should be addedhéovacuum solution when a potential
representation is considered. This introducesmgpdeal component in all solutions that we shall
ignore in this publication.

From Faraday’'s Law, equation (2-2) using equat{@#8) and (2-10) becomes

VX wp =0 (2-13)



and

VXwA=0. (2-14)
We can write

Vi = woA (2-15)
and

V{=wd (2-16)

with two new scalar potentialg and{. Substituting (2-15) and (2-16) into (2-7) gives
v{=V¢- V. (2-17)
Gauss’s Law acting on (2-6) becomes

V-(wxA) =0 (2-18)
Upon substituting equations (2-15), (2-16) and) {&-18) gives

V-(wa)=V-(%x%).

Noting (2-17),

V(B x D) oy (BT TH)

¢ wo ¢) Wy
Since
Vi xVyp =0
we have
(LT T _ . 4
v( ; xwo) v (an(¢>)><w0).

Using the vector identity
V-(axb)y=b-Vxa—-a-Vxb

we have

V- (zLn(@®) x Z£) = 2.7 x 7Ln(g) - Vin($) ¥ x 2.

The first term on the right hand side vanishestidatly. Further, since



Vx@pa=¢Vxa+ Ve xa forascalayp, we have

W_op(~ = _ _Twoxry
TxZ =y (=) xp+ -7 xry = -2
We thus have that
V- (@xA) =-Vln(p) - 22 = 0. (2-19)
0

Because
a-(bxc)=b-(cxa)=c-(axb)

equation (2-19) has the following alternate forms

T (Fooxvy) _ Foo(Tyxre) _ 7y (TgxPwo) _ o (2-20)

Pwo? pwo? pwo?
An examination of (2-20) suggests three possibligtiens if neitherw, nor ¢ are zero.

i. V¢, Vw,, andVy (i.e.A) are all parallel, because all cross-product seane zero,
i. V¢, Vwy,, and Vi are mutually perpendicular, since all dot prodeon are zero, or
iii.  one or more of the gradients are zero.
The first option has
VpxA=0.

Therefore, according to (2-7¢ is parallel toA andw x A = 0 from which the fields are
Maxwellian.

For second option, from equation (2-7)
P XA=VpxA
gives us thate¢, V¢ andA are co-planar but perpendiculardox A (see Figure 1).

wd
Figure 1

Since V¢ is perpendicular t&/y and both must be perpendicular t@ x A and equation
(2-17) requires that



wp=Vp—Vy (2-21)

which must also be perpendicular tox A, then the only possible direction fabg is

perpendicular to botli¢ andVy with the three terms forming the mutually pergealdr axes
of a 3D coordinate system. This is an impossibitiecause of perpendicularity with x A

unless one of the terms is zero. This leads tisetohird option, unless

wp =0
in which case
wXA=0.

The third option
a. V¢ =0 hasw XA =V¢ x A =0 from which the fields are Maxwellian.
b. V¢ =0 hasA = 0 from which bothE andB are zero.
C. Vwy =0 hasw, = constant with the result thal/ x A = 0 from (2-14).

For option “c”, Gauss’s Law has
Vi(wxA)=A4-(Vxw)=0,
but

-1 _ 9
y><w—¢z><w¢ 5 Xw.

Therefore, because of Faraday’'s Law,

: __ W (v _
A-(Uxw)=-2 (2xw)=0.
Either one or more of the terms are zero, or tlreynautually perpendicular. These options have

all been dealt with in the above discussion.

Consider now the special case of one or morg, df w,, andw being zero globally. Firstly, it
has been argued [5] thaty = 0 andw = 0 are not possible solutions to the ECE equatidns
electromagnetism because the electromagnetic fealdn the vacuum state, is a continually
rotating spacetime. The only possible exceptionuld/de when both the scalar and vector
magnetic potentials are zero.

However, if¢p = 0 globally then Vo =0 then E =0 sothad = 0 andB = 0.
IfA=0 thenE=0 andB = 0.
Thus if any of the potentials vanish, the solui®the zero potential state.

It has been shown also that in general, for panwith continuous second derivatives, that the
only static solutions to the ECE engineering equmsti are equivalent to those given by
traditional electromagnetic theory [1]. This faits be true under two conditions, namely when
V¢ # 0 but ¢ = 0, and when at least one of the potentials is nvailiired.



Let us examine the situation whéfe + 0 but¢ = 0.
By equation (1-1) itw is real, and non-singular, then
E=-2V¢, (2-22)

that is to sayE will be double the value of the corresponding Mabkae value at that particular
point in space.

To investigate this particular case further, coaskiflas a function of the scalar potential, then by
equation (2-9)

E() +069) = ~2V(p +69) + 20( + 56) (¢ + ) (2-23)
If we expandw aboutg, then to first order idg,

E(p + 6¢) = —2V(p) — 2V(66) + 2w¢ + 2w + zg—‘;¢>5¢> (2-24)
Writing

‘a’—z = lim&p_,()%;i@ = lim, (—29(Ln(69)) + @ + 2 Z—;’¢) (2-25)
At ¢ =0,

oE .

rrie 61(})210(—2\7(1,71(5(1)) ) + w) (2-26)

.. 0w . .
if 20 is finite.
In general, fo% to be finite atp = 0 , w must be infinite.

For B to be finite, then by equation (2-6)
wxA=0 (2-27)
indicating a Maxwellian type of solution.

The situation where the potentials are multi-valwetl be dismissed for the moment on the
grounds that they can be described with sufficiaoturacy by an appropriate series of
orthogonal functions, and so have well definedwdgives to any desired levels.



3 Discussion

It has been shown in the previous discussion thatatic ECE electromagnetic fields are either
trivial (the vacuum state, or the even lower st@teero potentials) or Maxwellian. Enough
continuity of the variables had to be assumed twige values for the Maxwell field equations.
This requires that ¢ and A havespatial first derivatives that are defined everywehend are
continuous so that its second degree derivativest.exThe productgw¢ andw,A4 needto be
defined everywhere and continuous to that theitiglpderivatives can be formed.
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Appendix |

Proof thatw X A = 0 is equivalent tow,4 = wa.
From the electric antisymmetry equation (2-7)
wXA=0 isthe same as

VpxA=0.

If none of the variables in these two expressiaeszaro, therw, V¢, andA are parallel. We
can then write

w=kA.

If we substitute this into Faraday’s Law,
VXwp=VxkAp=V(k p) X A+kdpVx A=0

or

Vx A=-Vin(k ¢) x A. (A-1)
The second form for the electric intensity givesaday’s Law as
VX (wod) =Vwy XA+ wVXA=0

or

VxA=-Vin(wy) X A.

Comparing this to (A-1) we see that

k¢ =wg

from which follows



