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Abstract 
In Einstein-Cartan-Evans (ECE) theory the Maxwell-Heaviside electrodynamics has been 
corrected to a generally covariant form. The spin connections being introduced by ECE the-
ory lead to differential equations of forced oscillations for the potential. In this paper the Cou-
lomb law of ECE theory is studied by numerical methods. Some analytical models are pro-
posed and implemented by computer code which is downloadable from the web site. The 
results depend strongly on the assumptions made for the spin connection and charge density 
model. The existence of resonance frequencies and resonance enhancement of the potential 
are approved, showing that energy transfer from spacetime is possible. In addition to the 
analytical forms of the spin connections, a self-consistent scheme has been defined and im-
plemented. This gives consistent results and can be used in further applications of the ECE 
Coulomb law. 
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1 Introduction 
After the development of ECE (Einstein-Cartan-Evans) theory 0 focus has now been 
changed to applications and numerical simulations of key features of the theory. In particular 
effects which are not present in standard theory (Maxwell-Heaviside electrodynamics and 
special relativity) will be considered. One of the most prominent of these effects is the reso-
nance enhancement of fields by the structure of spacetime itself. This enhancement can be 
utilized to obtain energy from spacetime. In recent papers by M. W. Evans 0 it has been 
shown that the field equations of ECE theory, considered on the level of potentials, reveal the 
properties of differential equations for driven oscillations. Thus the mechanism of ECE reso-
nance enhancement can be tracked down to a well known mechanism in physics. At reso-
nance, excess energy is transferred to the oscillating parts via the driving force. Conservation 
laws remain valid for the whole system. In terms of ECE theory this means that energy from 
spacetime itself is transduced to electromagnetic or mechanical oscillations. The “driving 
force” is provided by imposing a timelike or spacelike periodical structure to the system. 

Aim of this paper is to present means for studying the basic resonance mechanisms. The 
equations have been coded and are publically available [6]. The readers are encouraged to 
play themselves with them to obtain an impression of the effects and the opportunities. In this 
article we restrict ourselves to the simplest case, the electric potential, neglecting all mag-
netic effects. It has been shown recently that it is possible to combine the resonance effects 
in this approximation with standard quantum mechanical atomic structure calculations [3]. 
Thus it should be possible to understand the excitation mechanism on a microscopic level. 
We hope that resonance effects can be specifically designed in near future. 

In the next section the model is described and the differences between the analytical model 
and numerical models are lined out. In section 3 we present the results and discuss some 
prominent differences between the models. 

2 Model system 
We choose the generalized Coulomb law of ECE theory 0 as a model system. This connects 
several components of the vector and scalar potential by the spin connections of Cartan ge-
ometry. We restrict ourselves to pure electrical, time-independent interactions. The Coulomb 
law then reads 0 

with  

 
where E is the electric field, Φ the electrical scalar potential, ω the vector of spin connec-
tions, and ρ the charge density. Inserting eq. (2) in (1) gives 

This is a linear differential equation in Φ. In standard theory there is no spin connection, and 
eq. (3) changes to the well-known Poisson equation of electrostatics: 
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By interpreting the charge density term in eq. (1) as an oscillatory term in space 

with wave number κ, eq. (3) is a differential equation for a driven oscillation. Restricting our 
considerations to one dimension, we obtain 

For constant values of ω and dω/dx, this gives the well-known resonance behaviour with 
resonance wave number κ0. This is text book physics. The resonance wave number Fehler! 
Verweisquelle konnte nicht gefunden werden. is given by 

 
The situation gets more complicated as soon as a more realistic ω is considered which is 
varying in space. Then analytical solutions are difficult to obtain, and eq. (6) has to be solved 
numerically. This can be done straightforwardly by handling eq. (6) as an ordinary differential 
equation which can be solved by an iteration scheme. This is obtained in simplest form by 
inserting the discretized first-order derivative operators (with increment h): 

Resolving for Φn+1 gives the recurrence formula: 

The first two values of Φ have to be predefined, representing the initial value and its deriva-
tive. It is known from driven oscillations that the resonance behaviour does not depend on 
the initial values, so the choice is uncritical. 

A computer program has been written which assumes different forms of ω(x) and ρ(x) and 
can be downloaded from the AIAS web site [4]. Some example cases are discussed in the 
next section. 

For realistic models, it is important to use a reasonable form of the spin connection function. 
We can do a step in this direction by the following consideration. An electrical potential de-
formates the spacetime by its energy content which is the potential energy 
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for a charge q. Wpot is proportional to the potential itself. If we assume that the deformation is 
purely torsion-like, we can (to a first approximation) assume 

Setting 

with a constant factor f, this gives a nonlinear differential equation in Φ: 

or 

Discretizing this equation directly gives quadratic terms in Φ which turned out to lead to sig-
nificant numerical problems. It is better to stay at eq. (9) and define a solution algorithm as 
follows: 

1. choose a start value for Φ 

2. set   ω=f Φ 

3. solve eq. (9) 

4. if new solution differs from the old, go to step 2 

This leads to a self-consistent solution for Φ. The method can also be applied for atomic 
structure calculations where equation (3) has to be solved to obtain the Coulomb potential 
from the charge density 0. 

3 Results 
Model 1: Analytical solution 
First we study the behaviour of the analytical solution of eq. (6) which has been computed 
numerically from eq. (9) in order to test the computer code. We have set ε0=1, ρ0=1 and do 
not further consider physical units for reasons of simplicity. In the example we have chosen 
ω=0.1, ω’=2. According to eq. (7), the resonance wave number should be then κ0=1.414. In 
Fig. 1 the off-resonance case κ=1 is shown. Because κ is below the resonance value, driving 
force (ρ) and potential (Φ) are in phase. In the resonance case (Fig. 2, κ=1.414) both are 
shifted by 90 degrees, and the amplitude of Φ is at maximum. In Fig. 3 we see off-resonance 
again in the region above resonance (κ=3), leading to a phase shift of 180 degrees between 
ρ and Φ. 

In Fig. 4 the curve of amplitude resonance Φmax(κ) is shown for varying values of κ. It can be 
seen that resonance occurs at the value predicted by eq. (7). 
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Model 2: Linear ω(x) 
The the first non-constant ω has been chosen as a linear function: 

 ω = 0.1*x,      ω’ = 0.1 

This gives a qualitative different resonance behaviour, beginning with a maximum peak (see 
example for κ=1.0 in Fig. 5). The resonance curve Φmax(κ) shows a broad maximum at κ=0.2. 
(Fig. 6). 

Model 3: oscillating ω 
Making ω an oscillating function 

 ω = sin (κx) 

leads to a type of unharmonic behaviour of Φ(x), see Fig. 7 for κ=0.6. The maxima of Φ in-
crease continually for increasing x. We have restricted the calculation to 3 wavelengths for 
each value of κ. In this way a reasonable resonance curve can still be obtained (Fig. 8). The 
amplitudes increase indefinitely for κ→0. Therefore the curve begins at κ=0.18, not at κ=0. 

Model 4: oscillating ω with decreasing ρ 
So far the charge density ρ has been chosen to be harmonically oscillating. The results of 
Model 3 suggest to restrict the amplitude of ρ for increasing x in order to avoid an unlimited 
amplitude gain. We choose 

 ρ = exp(-(0.1*κx) 2) * cos(κx), 

that is a Gaussian function modulated by a cosine. The result (Fig. 9) is even worse when 
considering the same κ as in Model 3 (κ=0.6). Correspondingly the resonance curve (Fig. 10) 
goes up even higher for κ→0. On the other hand, this can be a wanted behaviour, if very 
high Q factors are to be obtained. 

Model 5: ω in proportion to decreasing ρ 
Obviously the course of ω and dω/dx for increasing x values plays an important role for de-
termining the resonance behaviour. in Model 5 we have simply chosen 

 ω = ρ 

with a decreasing ρ as in Model 4. Consequently the amplitude of Φ now does no more in-
crease over all limits (Fig. 11). The resonance behaviour (not shown) is similar to Fig. 8 and 
Fig. 10 (resonance for for κ→0). In Fig. 12 we have plotted ω and ω’. The phase shift be-
tween both is a consequence of the cosine function in ω. 

Model 6: ω = f Φ 
The last model is the self-consistent calculation according to the ansatz given in eq. (12). 
Φ(x) for f=1, κ=1.3 is shown in Fig. 13. It can be seen that there is no homogeneous phase 
shift between Φ and ρ, indicating the non-linear nature of this ansatz compared to regular 
resonance equations. Convergence is difficult to obtain for values smaller than κ=1.3. Fig. 14 
shows ω and ω’. 

In Fig. 15 the convergence behaviour of Φ is presented. The most upper curve is the start 
value of Phi with ω=0 and ω’=0. This is the solution of the Coulomb law without spin connec-
tion. The solution shows a linear increase in the region of vanishing charge density, as ex-
pected from the Poisson equation. This behaviour has changed in the converged solution, 
there is a constant range now. This is a hint that the occurrence of a spin connection may 
change the qualitative behaviour of the Coulomb law completely. 
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Resumé 
The analytical solutions of Model 1 illustrate vividly what is possible with modelling of the 
ECE Coulomb law. With different spin connections a large number of possibilities becomes 
available. A small part of them has been presented in this paper. Sometimes the solution 
diverges if an indefinitely expanding charge density in space is assumed. This is probably no 
realistic choice because the charge density of atoms is bound to the atomic volume, and in 
solids one would typically restrict the volume to the unit cell of the crystal lattice. 

The most interesting procedure is to derive the spin connection from other physical quan-
titites like the potential itself, as was presented in this paper. This method can be transferred 
to extended computing environments like atomic and molecular structure programs where a 
new type of atomic excitations can be studied. 
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Fig. 1. Model 1: Off-resonance (κ=1.0) 

 

 
Fig. 2. Model 1: Resonance (κ=1.414) 

 



 8  

 
Fig. 3. Model 1: Off-resonance (κ=3.0) 

 

 
Fig. 4. Model 1: Amplitude resonance curve Φmax(κ) 
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Fig. 5. Model 2: Amplitudes near to resonance 

 

 
Fig. 6. Model 2: Amplitude resonance curve Φmax(κ) 
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Fig. 7. Model 3: Amplitudes near to resonance 

 

 
Fig. 8. Model 3: Amplitude resonance curve Φmax(κ) 
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Fig. 9. Model 4: Amplitudes near to resonance 

 

 
Fig. 10. Model 4: Amplitude resonance curve Φmax(κ) 
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Fig. 11. Model 5: Amplitudes near to resonance 

 

 
Fig. 12. Model 5: ω (in proportion to ρ) and ω’  
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Fig. 13. Model 6: Amplitudes near to resonance 

 

 
Fig. 14. Model 6: ω (in proportion to Φ) and ω’  
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Fig. 15. Model 6: convergence behaviour of Φ(x) 

 


