Numerical solutions of resonance equations with
non-constant restoring force

The classical resonance equation without damping has the form
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where @ is a physical quantity, x a space coordinate, and f(x) is the driving force. K,
represents the Hooke term, which is a linear force term providing the restoration of ® to its
original position. In classical theory of forced oscillations f(x) is a periodic function of the form
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with wave number K, and K, is the resonance frequency, i. e. ® tends to infinity if k
approaches K,. This simplified model is not sufficient for the application cases occurring in
space time resonances of ECE theory. First we have a driving force which does not have the
simple cosine form of (2) but can be composed by a Fourier series. For example in paper 63
it takes the form
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with a constant amplitude f, and coefficients A, B, C.

Secondly the restoring force has not always a constant coefficient k,. Even for the simplest
models of spin connection resonance of magnetism it was shown in paper 65 that k; is a
function of space coordinates. From a mathematical standpoint it is not clear how resonance
occurs in these cases, and if it is present at all. Therefore we have made a numerical model
which solves the differential equation
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with driving forces given by Eq. (2) and (3) and functions of k, defined as
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In case of constant K, (Fig. 1) we get the resonance curves of the ECE Coulomb law (see
paper 63). Using an oscillating form of k, gives the curves of Figs. 2-5. There are always
more resonances present than in the case of a constant k,, even in the case of the simple
cosine driving force. This means that a rich structure of resonances is to be expected from
spin connection resonances in magnetostatics. This statement can gvefi be extended to the
electrodynamic and mechanical sector of ECE theory.
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Fig. 1: ko = 1.
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Fig. 2: ko = cos (1.7r)
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Fig. 4: ko = cos (0.5%r)
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Fig. 5: ko = (cos (1.%r))**2



