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Abstract 

 

It is shown here that for a single polarization, the ECE theory of 

electromagnetism reduces to that of Maxwell-Heaviside and that 

only one possible reduction to this form exists. A general gauge 

condition is introduced combining the antisymmetry relations of 

ECE, that offers the possibility of resonant solutions.  It is also 

shown that the Lindstrom Constraint developed earlier is not of a 

general enough nature to be useable for most electromagnetic 

calculations. 
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1. Introduction 

 

It is common practice and almost always expected in physics, that when a new theory is 

developed which explains poorly or previously unexplained observations, that this new 

theory should reduce in some fashion to that which was already developed.  By assuming 

torsion in the definition of space-time, and using Cartan geometry, a new physics results, 

one component of which is a new theory of electromagnetism, coined the ECE theory of 

electromagnetism [1]. 

 

A new theory in physics has to pass into existing theory in cases where well-known 

effects are described which do not require the new theory. Therefore the electromagnetic 

part of ECE theory has to become identical to Maxwell-Heaviside theory when effects of 

general relativity are not important or to be discarded. In earlier stages of ECE theory this 

was done by assuming the spin connections (representing curvature and torsion of space 

in general relativity) to be negligible. Then the ECE field equations reduce to the 

Maxwell-Heaviside equations directly. However, after discovery of additional conditions 

imposed by the underlying Cartan geometry, called the antisymmetry constraints [2-4], 

this simple procedure leads to a violation of these conditions. Therefore we investigated 

all possible ways of transition and found that only one method is consistent with the 

antisymmetry constraints. New insight into the principle nature of relativistic effects has 

been found. In chapter 2 we describe the correct transition and in chapter 3 the result is 

discussed. 

 

The definition of electric intensity in ECE theory for a single polarization is [2, 3] 

 

φωφ ωA
A

E +−
∂
∂−−∇= ot

.        (1) 

 

As a result of fundamental antisymmetries in Cartan geometry, a new equation that 

constrains the definition of E in equation (1) is introduced.  This electric antisymmetry 

equation is [4] 
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00 =++∇−
∂
∂ φωφ ωA
A
t

.        (2) 

 

The ECE definition for B is [1] 

 

AωAB ×−×∇=          (3) 

 

and correspondingly, the magnetic antisymmetry equation is [4] 

 

0=++
∂
∂
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∂
∂

jkkj
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x

A

x

A ωω        (4) 

 

where the Einstein convention of summation over repeated indices is not implied.  The 

Einstein convention will not be used anywhere in this paper unless so noted.  E is the 

electric intensity, B is the magnetic induction, A is the magnetic vector potential, φ is the 

electric scalar potential, ω  is the vector spin connection and oω  is the scalar spin 

connection.  We will assume in this analysis that the active medium is a vacuum so that 

complications introduced when using a more complex medium is avoided. 

 

Equations (1) through (4) define the fundamentals of ECE electromagnetic theory in 

vector form, for a single polarization. 

 

2. Reduction of ECE EM Theory to that of Maxwell-Heaviside  

 

For equation (1) to reduce to the Maxwell-Heaviside definition  

 

t∂
∂−−∇= A

E φ , 

 

one of four things must happen; 
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• 0=+− φω ωAo   or      (5) 

• φωφ ωA
A +−=

∂
∂−∇− ot

 or      (6) 

• 0=oω  and  0=ω   or      (7) 

• φω ∇=Ao  and  φωA −=
∂
∂

t
      (8) 

 

For equation (3) to be compatible with Maxwell-Heaviside definition  

 

AB ×∇=  

 

one of three things must happen; 

 

• 0=ω     or      (9) 

 

• AωA ×−=×∇   or      (10) 

 

• 0=× Aω          (11) 

 

These options are summarized in the following table.  The electric antisymmetry equation 

(2) has been applied to the calculations of E and B.  There is not a requirement that the 

vector and scalar potentials be identical in both theories; they must be consistent 

throughout when going from the ECE representation to the Maxwell-Heaviside 

representation. 
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Table 1  Options for Reducing ECE Electromagnetic Theory to that of Maxwell-Heaviside 

Option  E A0ω  φω  B Aω×  

1 φω ωA =o  

t∂
∂−∇− Aφ  







 ∇+
∂
∂− φ

t

A
2

1

 








 ∇+
∂
∂− φ

t

A
2

1

 

A×∇  0 

2 

φω

φ

ωA

A

+−

=
∂
∂−∇−

o

t  







 −
∂
∂− A
A

ot
ω2

 

t∂
∂A

 
- A×∇ * 

A
A ×

∂
∂+

∇−

)

(
1

t

φ
φ

 

3 

0

0

=
=

ω

oω
 

t∂
∂− A

2  
0 0 A×∇  0 

4 

φ

φω

ω
A

A

−=
∂
∂

∇=

t

o

 









∂
∂−∇−

t

Aφ2  
φ∇  

t∂
∂− A

 
A×∇ * A

A ×
∂
∂−

tφ
1

 

5 0=ω  φ∇− 2  φ∇+
∂
∂−

t

A
 

0 A×∇  0 

6 AωA ×−=×∇  

φω

φ

ωA

A

+−
∂
∂

−∇−

o

t  

- - A×∇2  A×∇−  

7 0=× Aω  

φω

φ

ωA

A

+−
∂
∂−∇−

o

t  

- - A×∇  0 

* for harmonic functions typically 0
1 =×

∂
∂

A
A
tφ

 

 

As seen in the above table, option 1 and its variations, is a possible option for reducing 

ECE theory to that of Maxwell-Heaviside, and in fact is the only option. 

Option (2) is not valid because of conflicting factor in the definition of B. 

Option (3) is not valid because the definition of E is incorrect for Maxwell-Heaviside. 

Option (4) is not valid for the same reasons as option (2). 

Option (5) is not valid because the definition of E is incorrect for Maxwell-Heaviside. 
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Option (6) is not valid, since it is the Lindstrom Constraint [3], which is shown to be too 

restrictive for general Maxwell-Heaviside theory (see Appendix). In addition, the spin 

connections still appear in E. 

Option (7) is not valid because the spin connections still appear in E. 

 

An examination of option 1, the only viable option, has that as a result of 0=× Aω , 

equation (4) for this option becomes a new constraint, given by 

 

0
2

2 0 =+
∂
∂

+
∂
∂

=+
∂
∂

+
∂
∂

kj
k

j

j

k
kj

k

j

j

k AA
x

A

x

A
A

x

A

x

A

φ
ωω .     (12) 

 

We note that  

 








 ∇+
∂
∂−== φωφ

t

A
Aω

2

1
0 .        (13) 

 

Given equation (13), 0=× Aω , means that  

 

0=×
∂
∂−×∇ A
A

A
t

φ .         (14) 

 

For functions that can be represented as harmonic functions, 

 

0=×
∂
∂

A
A
t

 

 

so that φ∇  is parallel toA .  Note that ω  is also parallel to A. 

 

Equation (12) becomes upon substitution of equation (13) 
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or upon re-arranging to eliminate the singularity in φ, 
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
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∂
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x

A φφ .      (16) 

 

This equation, the equivalent of both antisymmetry equations, can be written in vector 

notation as 

 

( )( ) A
A

AA ⊗






 ∇−
∂
∂=∇+∇ φφ

t
T        (17) 

 

where ⊗  is the symbol for the outer product (matrix multiplication), and 

 

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=∇

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

x

A

x

A

x

A
x

A

x

A

x

A
x

A

x

A

x

A

A . 

 

The superscript T refers to the transpose of the matrix. Because the indices j, k are parts of 

a permutation of (1, 2, 3), only three off-diagonal matrix elements of (17) are to be 

considered. 

 

If we define, which we can do since the spin connection terms do not appear in this 

reduction of the ECE theory, in the following manner 

 

( )TAAω ∇+∇=∇ ,         (18) 
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Equation (12), the magnetic antisymmetry equation, becomes 

 

02 =+
∂
∂

ji
j

i A
x

ωω
         (19) 

 

which is equivalent to equation (15).  Since ω  is unspecified in this theory, this equation 

does not limit A in any way.  Thus the magnetic antisymmetry equation is not violated in 

this restricted theory. 

 

We note that from the definition of option (1), that with equation (2), the electric 

antisymmetry equation becomes 

 

( ) ( ) 






 ∇+
∂

⋅∇∂−=






 ∇+
∂
∂−⋅∇=⋅∇=⋅∇ φφφω 2

2

1

2

1

tto

AA
ωA .   (20) 

 

For a homogeneous wave in φ: 

 

0
1

2

2

2
2 =

∂
∂−∇ φφ
tc

.         (21) 

 
Assuming a vanishing derivative of the spin connection terms in Equation (20),  

 

( ) ( ) 0=⋅∇=⋅∇ φω ωAo ,        (22) 

 

we obtain by means of (21) and integrating over time: 

 

0
1
2

=
∂
∂+⋅∇−

tc

φ
A .         (23) 

 

This equation is very similar to the Lorenz Condition, often used as a gauge in Maxwell-

Heaviside theory. The difference is the sign of the divergence term. If we assume the 

original Lorenz condition 
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0
1
2

=
∂
∂+⋅∇

tc

φ
A          (24) 

 

to be valid instead of (23), we obtain by time integration and adding A⋅∇ on both sides 

of Equation (20): 

 

( ) ( ) AωA ⋅∇−=⋅∇=⋅∇ ∫∫ dtdto φω        (25) 

 

or in differential form: 

 

( ) ( ) .AωA ⋅∇
∂
∂−=⋅∇=⋅∇
to φω        (26) 

 

Both formulations (23) and (24) satisfy the electric as well as the magnetic antisymmetry 

equation as long as the additional assumptions for the spin connection terms (22) and (26) 

are valid. 

 

3.  Conclusions     

 

We have thus demonstrated that if we assume  

 

φω ωA =o   

 

in the ECE theory of electromagnetism, then this theory reduces to the  Maxwell-

Heaviside theory.  We have also noted in passing that the Lindstrom Constraint, which is 

a limited form of the magnetic antisymmetry equation, generates a solution that is 

equivalent, for the magnetic vector, to the ECE vacuum.  This is not general enough for 

most electromagnetic applications. 
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We note that if we assume option 1 as expressed in equation (13) then equation (16) 

becomes a gauge condition.  It is the most general gauge condition that is compatible 

with ECE theory1 when reduced to the classical limit. From equation (16), for example 

we can see that a certain kind of “resonance” is possible: If the electric potential φ is near 

to zero, the derivatives of the vector potential A can take huge values and vice versa. This 

means that an electrical device driven by pulsed magnetic or electric signals could show 

anomalous effects. 

 

Another more principle result is that, by equating both types of spin connections in option 

1, we do not assume that both connections vanish. This means that effects of general 

relativity are always present even if they do not lead to measurable effects. This is 

different from the conventional view that one only has to “switch on” effects of relativity, 

when discrepancies between experiment and non-relativistic theory appear. Another 

example of this in classical physics is fluid dynamics. It has recently been shown [6] that 

a velocity field is generally described by Cartan geometry where the spin connections are 

equivalent to turbulence effects of the fluid. Nobody had assigned these effects to general 

relativity before. 

                                                 
1 It should be noticed that in ECE theory there is no gauge because all potentials are defined as absolute 
values. 



 11 

 

References 

 

1. M. W. Evans, Generally Covariant Unified Field Theory (Abramis, 2005  

 onwards), in seven volumes to date. 

2. M.W.Evans, H. Eckardt and D.W.Lindstrom, Antisymmetry constraints in  

 the Engineering model, www.aias.us, paper 133 

3. H. Eckardt, ECE Engineering Model, slide set version 3.0 on  

 www.aias.us, 2009 

4. M. W. Evans, D. W. Lindstrom and H. Eckardt, The Antisymmetry Law  

 of Cartan Geometry: Applications to Electromagnetism and Gravitation,  

 www.aias.us, paper 134 

5. H. Eckardt and D. W. Lindstrom, Solution of the ECE Vacuum Equations,  

 publication on www.aias.us, 2009 

6. M. W. Evans, Development of fundamental dynamics from differential  

 geometry, www.aias.us, paper 143 



 12 

Appendix: Limitations Imposed When Using the Lindstrom Constraint 
 
The magnetic antisymmetry equation for a single polarization is 
 

0=++
∂
∂

+
∂
∂

jkkj
k

j

j

k AA
x

A

x

A ωω .       (A-1) 

 
The Lindstrom Constraint [4], a limited form of the magnetic antisymmetry equation, is 
given by 
 

0=−+
∂
∂

−
∂
∂

kjjk
k

j

j

k AA
x

A

x

A ωω .       (A-2) 

 
For equation (A-2) to be a sub-set of equation (A-1), we need 
 

0=+
∂
∂

kj
k

j A
x

A
ω          (A-3) 

 
which upon substitution into equation (A-2) requires that 
 

0=+
∂
∂

jk
j

k A
x

A ω .         (A-4) 

 
Equations (A-3) and (A-4) solve to give 
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1

32
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x

A
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A
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∂
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1
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11

x
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A
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∂
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These equations form part of the equation set that defines the ECE vacuum [5] and has 
solution for A given by 
 

( )n
n tTanhD β−⋅=∑ rkkA .        (A-8) 

 
This solution is too limiting for a general electromagnetic problem, the limitation arising 
from not having three perpendicular waves with independent amplitudes. 


