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Abstract 
 
It is shown that the description of a circuit by electromagnetic ECE theory in one 
polarization state can be decoupled from the states of the electromagnetic vacuum. The 
circuit description is unaffected by the vacuum states. Only the geometry of the circuit 
arrangement impacts the vacuum states. Boundary conditions are discussed. 
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1 Introduction 
 
From experiment it is well known that there is a background or vacuum potential which 
interacts in certain cases with matter (for example Lamb shift in atomic and molecular 
spectra). In macroscopic electromagnetic devices such an effect is not observed, and is 
not predicted by conventional Maxwell-Heaviside theory. Exceptions will arise when the 
potential is multi-valued or non-separable [1-3]. In this cases energy can be transferred 
from the vacuum to the circuit without violating energy conservation [4], preferably by 
resonance effects. 
 
In this paper we consider regular solutions of the ECE Maxwell-like field equations. In 
section 2 we will show that the field equations with inclusion of antisymmetry conditions 
allow for a complete decoupling of circuit solutions from the vacuum state. In section 3 
we discuss boundary conditions of the vacuum state for a given geometry. This may be a 
prerequisite to find situations where energy transfer (or information transfer) from the 
vacuum is possible. 
 

2 Relating the Vacuum State to the ECE Equations of Electromagnetism 
 
The potential version of the ECE equations of electromagnetism have been written in 
terms of an electric scalar, a magnetic vector, and two spin connected potentials for a 
single polarization [1-4].  Since that formulation contains non-derivative values in the 
potentials, this requires that the potentials be referenced to a “zero” state.  In an earlier 
publication [1] it was shown that the vacuum exists as a source-free field of non-zero 
oscillations in vacuum potentials, possibly stochastic, where both the electric intensity 
and the magnetic induction are identically zero and satisfy the equations of antisymmetry.  
This means that the total potentials are the sum of the potentials as defined by the 
application of circuits, geometries, etc. and the vacuum or background field as defined by 
that same situationa, i.e. 
 

bf AAA +=           (2-1) 

bf φφφ +=           (2-2) 

bbff AωAωAω ×+×=×         (2-3) 

bbff AAA 000 ωωω +=         (2-4) 

bbff φφφ ωωω +=          (2-5) 

 

                                                 
a The subscript “f” in the equations will refer to an applied field or “circuit” whereas the subscript “b” will 
refer to the vacuum or background field. 
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These give rise to electric intensity and magnetic induction given by 

( ) ( ) bbffbbffbfbf t
φφωωφφ ωωAAAAE ++−−+

∂
∂−+−∇= 00    (2-6) 

( ) bbffbf AωAωAAB ×−×−+×∇=       (2-7) 

 
If these are substituted into the ECE-EM field equations for a single polarization, 
 

0=⋅∇ B           (2-8) 

0=
∂
∂+×∇

t

B
E          (2-9) 

ε
ρ=⋅∇ E           (2-10) 

J
E

B otc
µ=

∂
∂−×∇
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1
         (2-11) 

 
one gets 
 

( ) 0=×+×⋅∇ bbff AωAω         (2-12) 

( ) ( ) 000 =×+×
∂
∂−++−−×∇ bbffbbffbbff t

AωAωωωAA φφωω   (2-13) 

( ) ( ) ( ) ( )
0

00 ε
ρφφωωφφ =




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+++−+∇−

∂
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 (2-14) 
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( ) ( ) ( ) ( ) JωωAA

AA

AωAωAA
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


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+++−+∇−
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+∂

−
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∂−
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bbffbf

ttc

 (2-15) 

 
In addition, the antisymmetry equations for the total field are 
 

( ) ( ) ( ) ( ) 000 =+++++∇−
∂
+∂

bbffbbffbf
bf

t
φφωωφφ ωωAA

AA
   (2-16) 

( ) ( ) ( ) ( ) 0=++++
∂

+∂
+

∂
+∂

bjbkfjfkbkbjfkfj
k

bjfj

j

bkfk AAAA
x

AA

x

AA
ωωωω   (2-17) 

where cyclic permutation through non-repeating indices i, j, k is assumed. 
 
 
The vacuum state was defined [1] by 
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00 =+−
∂

∂
−∇− bbbb

b
b t

φωφ ωA
A

,       (2-18) 

0=×−×∇ bbb AωA          (2-19)  

 
plus the vacuum versions of the antisymmetry equations, namely 
 

00 =++∇−
∂

∂
bbbbb

b

t
φωφ ωA

A
,       (2-20) 

0=++
∂
∂

+
∂
∂

bjbkbkbj
k

bj

j

bk AA
x

A

x

A ωω .       (2-21) 

 
Subtracting the divergence of equation (2-19) from equation (2-12) gives 
 

( ) 0=×⋅∇ ff Aω .         (2-22) 

 
Subtracting the curl of equation (2-18) and the time derivative of equation (2-19) from 
equation (2-13) gives 

( ) ( ) 00 =×
∂
∂−+−×∇ ffffff t

AωωA φω .      (2-23) 

Subtracting the divergence of equation (2-18) from equation (2-14) gives 

0
0 ε

ρ
φωφ f

fffff
f

t
=








+−∇−

∂
∂

−⋅∇ ωA
A

.      (2-24) 

And finally, subtracting the curl of equation (2-19) and the time derivative of equation (2-
18) from equation (2-15) results in 

( ) ffffff
f

fff ttc
JωA

A
AωA 002

1 µφωφ =







+−∇−

∂
∂

−
∂
∂−×−×∇×∇ .  (2-25) 

 
Equations (2-22) through (2-25) are the ECE electromagnetic field equations for a given 
circuit ignoring the effects of the vacuum, as reported in similar form elsewhere (Eckardt 
eng model). 
 
Subtracting (2-22) through (2-25) from (2-12) through (2-15) leaves 
 

( ) 0=×⋅∇ bb Aω          (2-26) 

( ) ( ) 00 =×
∂
∂−+−×∇ bbbbbb t

AωωA φω       (2-27) 
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This shows that the vacuum satisfies the ECE engineering equations. 
 
A similar analysis can be preformed on the equations of anti-symmetry.  If we subtract 
equation (2-18) from equation (2-16), we are left with 
 

00 =++∇−
∂

∂
fffff

f

t
φωφ ωA

A
       (2-30) 

 
This is the electric antisymmetry equation for the applied field indicating that the vacuum 
state is independent of the applied field for this relationship. 
 
Further, the vacuum terms in equation (2-17) are identically zero by virtue of the vacuum 
solution is defined to satisfy the magnetic antisymmetry relation (2-21), leaving 
 

0=++
∂
∂

+
∂
∂

fjfkfkfj
k

fj

j

fk AA
x

A

x

A
ωω        (2-31) 

which is the magnetic antisymmetry equation for the applied field.  This means that the 
vacuum field has no influence on the applied field in the magnetic anti-symmetry 
equation. 
 
In this discussion it was shown that the solution to the vacuum equations could be added 
without consequence to the solution for a specific ECE-EM application as long as the 
boundary geometries are the same.  The vacuum state obeys all of the ECE field 
equations when written in terms of vacuum potentials in a non-trivial manner, even 
though these same equations when written in terms of electric intensity and magnetic 
induction are trivial.  We infer from this that disturbance in the vacuum propagates at the 
speed of light.  It also means that the field set up by a circuit does not in any way depend 
upon, under normal circumstances, the vacuum state. The potential field generated by a 
given set of boundary conditions (the circuit) and the loading conditions (applied 
potentials) floats on top of the vacuum solution.  We do not see the effects of the vacuum 
potential, if there are any, because current instrumentation measures from a state of zero 
electric intensity or magnetic induction which we recognize as the definition of the 
vacuum state. 
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3 Boundary effects of the Vacuum Conditions 
 
Since the applied field floats upon the vacuum field normally without interaction, it 
would seem reasonable that the only possible place of interaction, should one exist, 
would be where the equations break down, i.e. near a singularity or discontinuity. 
 
To consider the interactions between the circuit field and the vacuum field near such an 
occurrence, the equations of ECE-EM theory can be put into a simpler format more 
conducive to solution using the vacuum conditions first defined in [1]. In particular, it 
was found that 
 

AωA ×=×∇          (3-1) 

 
and A and ω are parallel. Therefore 
 

Aω k=           (3-2)  
 
with a scalar function k, and both terms of (3-1) vanish. In particular, A is a curl-free 
potential and represents a non-turbulent vacuum flow of energy. In total the potentials 
must satisfy the equations [1] 
 

0=×∇ A           (3-3) 

0=× Aω           (3-4) 

0=−∇ φφ ω           (3-5) 

00 =+
∂
∂

A
A ω
t

         (3-6) 

 
Equations (3-3) and (3-4) state that the magnetic induction is zero, and (3-5) and (3-6) 
state that the electric intensity is zero in the vacuum state. Let us assume that the 
variables have values indexed by “1” at a boundary. Then we have from (3-2) 
 

11 Aω k=           (3-7)  

 
and from (3-5) 
 

0111 =−∇ φφ Ak          (3-8) 

 
The function k is in principle known from the vacuum solution of ω . When there is a 

metallic boundary with 1φ =const, it follows  
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01 =A ,          (3-9) 

 
 i.e. there is no flow of potential through this boundary. In the well known Casimir effect 
[5], the force between two planar metallic plates is reduced due to missing 
electromagnetic wave modes between the plates. The missing modes cannot be 
counteracted by an inflow of vacuum energy as we have shown, in accordance with 
experiment. 
 
The boundary conditions of Equation (3-6) read 
 

0110
1 =+

∂
∂

A
A ω
t

         (3-10) 

 
which in case of harmonic time behaviour of the form exp(iβt) with frequency β leads to 
 

( ) 0110 =+ Aωβi          (3-11) 

 

This can either be fulfilled by no input flow ( 01 =A ) or by identifying the imaginary part 

of 10ω with an oscillatory frequency, modulated by space-like functions as described in 

[1] in detail. 
 
The example of the Casimir effect shows that transfer of energy from vacuum to a circuit 
probably requires an “open” geometry. For example in a closed metallic box, energy 
cannot flow from the environment into the box, thus impeding transfer of larger amounts 
of energy. A detailed analysis would require solving the ECE wave equation 
 

( ) 0=− AR          (3-12) 

 
where R is the scalar curvature. In case R is constant, this is an eigenvalue equation for A 
which can be solved numerically. The solutions describe the allowed modes of A for 
given boundary conditions. 
 
In full analogy to Eq. (2-1), the potential can be split into the circuit and background part, 
 

bf AAA +=  ,         (3-13) 

 
and Eq. (3-13) is fulfilled if the wave equation is valid for both potentials independently: 
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( ) 0=− ffR A ,         (3-14) 

( ) 0=− bbR A ,         (3-15) 

 
where Rf and Rb are the eigenvalues for the circuit and background potentials 
respectively. It should be noted, however, that a simple addition of the eigenvalues in the 
form 
 

bf RRR +=           (3-16) 

 
produces cross-terms in Eq. (3.12). The combination of eigenvalues behaves in a non-
linear manner. 
 

4 Conclusions 
 
In summary, we have that 
 

1. The vacuum field acts independently from an electrical standpoint from the circuit 
field, but depends on the geometric arrangement of the circuit. 

 
2. We can add the vacuum field to the circuit field without consequence as long as it 

is done appropriately. 
 

3. The vacuum field satisfies the field equations of ECE-EM theory, thus verifying 
that a disturbance in the vacuum propagates at the speed of light. 
 

4. Energy transfer from the vacuum probably requires an electrically open 
environment. 

 
If one is to observe resonances and singularities in the solutions to the equations, it may 
be that the circuit field and the vacuum field have to be zero simultaneously at the same 
spatial location, which may be why it is not observed readily.  This may hold the key to 
finding these events analytically.  
 
Once a circuit has been built and set up and temporal disturbances have dissipated, the 
vacuum field is defined and unalterable unless something changes geometrically. This is 
the case for example in the Bedini machine [6] where the circuit continually changes so 
that changes in the vacuum field may get in phase with the circuit field. In the case of the 
Mexican device [7], the circuit appears to be geometrically fixed, but of course due to 
electrical-mechanical interaction, etc. it will move or change shape.  The Mark Steven’s 
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toroidal coil [8] for example was said to vibrate. This then may allow the circuit and 
vacuum fields to be put in phase hence allowing unusual ECE effects. 
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