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Abstract

It is shown that the description of a circuit byeatomagnetic ECE theory in one
polarization state can be decoupled from the su@ftébe electromagnetic vacuum. The
circuit description is unaffected by the vacuuntestaOnly the geometry of the circuit
arrangement impacts the vacuum states. Boundadjitmors are discussed.
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1 Introduction

From experiment it is well known that there is @kgaound or vacuum potential which
interacts in certain cases with matter (for examy@eb shift in atomic and molecular
spectra). In macroscopic electromagnetic deviceb s effect is not observed, and is
not predicted by conventional Maxwell-Heavisideditye Exceptions will arise when the
potential is multi-valued or non-separable [1-3].this cases energy can be transferred
from the vacuum to the circuit without violatingezgy conservation [4], preferably by
resonance effects.

In this paper we consider regular solutions of B@EE Maxwell-like field equations. In
section 2 we will show that the field equationshaiitclusion of antisymmetry conditions
allow for a complete decoupling of circuit solutsofrom the vacuum state. In section 3
we discuss boundary conditions of the vacuum $tata given geometry. This may be a
prerequisite to find situations where energy trangbr information transfer) from the
vacuum is possible.

2 Relating the Vacuum State to the ECE Equations of Electromagnetism

The potential version of the ECE equations of etenagnetism have been written in
terms of an electric scalar, a magnetic vector, taal spin connected potentials for a
single polarization [1-4]. Since that formulatiocontains non-derivative values in the
potentials, this requires that the potentials Heremced to a “zero” state. In an earlier
publication [1] it was shown that the vacuum ex&ssa source-free field of non-zero
oscillations in vacuum potentials, possibly stoticasvhere both the electric intensity
and the magnetic induction are identically zero saisfy the equations of antisymmetry.
This means that the total potentials are the sunthefpotentials as defined by the
application of circuits, geometries, etc. and taeuum or background field as defined by
that same situatidni.e.

A=A, +A, (2-1)
¢=¢: t¢, (2-2)
OXA =0, %A, +to, XA, (2-3)
WA =ty A, + A, (2-4)
0¢=0¢ +o. (2-5)

@ The subscript “f" in the equations will refer to applied field or “circuit” whereas the subscript will
refer to the vacuum or background field.



These give rise to electric intensity and magnaticiction given by
0
E= _D(¢f +¢E)_E(Af +Ab)_w0fAf ~ WAL TO @ O, (2-6)

Bzgx(Af"'Ab)_(’)fof_(’)beb (2-7)

If these are substituted into the ECE-EM field eopres for a single polarization

OmB=0 (2-8)

QxE+a_B: (2-9)
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one gets

Olo, xA +o,xA,)=0 (2-12)
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In addition, the antisymmetry equations for thaldield are
oA, +A
%—Q(@ rg )+ (@A, +ah,)+ o9 +o,)=0 (2-16)
0\Ay + A, +A.

( f(l;x A\)k)+ ( :;X A}J)+(a)ﬁAfk+a)DiAbk)+(a)kaﬁ +kaAbj):o (2-17)
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where cyclic permutation through non-repeatingagedi, j, k is assumed.

The vacuum state was defined [1] by
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OxA, —@, XA, =0 (2-19)

— WA, to,g =0, (2-18)

plus the vacuum versions of the antisymmetry eqoafinamely

aatb —-Ug +w,A, +o,¢ =0, (2-20)
0Py + A, + + =

- . - =0. 2-21
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Subtracting the divergence of equation (2-19) femaation (2-12) gives
Ol xA,)=0. (2-22)

Subtracting the curl of equation (2-18) and theetiderivative of equation (2-19) from
equation (2-13) gives

0
gx(—wofAf+mf¢f)—a(mfof):o. (2-23)
Subtracting the divergence of equation (2-18) femaation (2-14) gives
0A _ P
g- 3 —Ug —wpiAf tog |=—. (2-24)
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And finally, subtracting the curl of equation (2}hd the time derivative of equation (2-
18) from equation (2-15) results in

10 oA,
c? ot ot

gx(ngf_o‘)fof)_ _E¢f_w0fAf+mf¢f]::u0‘]f' (2-25)

Equations (2-22) through (2-25) are the ECE elecaignetic field equations for a given
circuit ignoring the effects of the vacuum, as mégw in similar form elsewhere (Eckardt
eng model).

Subtracting (2-22) through (2-25) from (2-12) thgby2-15) leaves

Q[ﬂmbeb):O (2-26)

0
gx(_MObAb+mb%)_a(mbeb)=O (2-27)



0 [ﬁ_ ag:[b -Ug, - wpA, +‘”b¢%j =0 (2-28)
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10 oA,
c’otl ot
This shows that the vacuum satisfies the ECE eergimg equations.

—Ug —wypA, +‘”b¢%j =0 (2-29)

A similar analysis can be preformed on the equatiohanti-symmetry.If we subtract
equation (2-18) from equation (2-16), we are lathw

0A
a—tf—ggof tay A tog =0 (2-30)

This is the electric antisymmetry equation for #pplied field indicating that the vacuum
state is independent of the applied field for teiationship.

Further, the vacuum terms in equation (2-17) aeatidally zero by virtue of the vacuum
solution is defined to satisfy the magnetic antieyatry relatior(2-21), leaving

aA‘k+6A—“+wa +w, A; =0 (2-31)
axj an i £k fk M

which is the magnetic antisymmetry equation for apgplied field. This means that the
vacuum field has no influence on the applied fieldthe magnetic anti-symmetry

equation.

In this discussion it was shown that the solutmthie vacuum equations could be added
without consequence to the solution for a spedf@E-EM application as long as the
boundary geometries are the same. The vacuum schkags all of the ECE field
equations when written in terms of vacuum potestial a non-trivial manner, even
though these same equations when written in termedeatric intensity and magnetic
induction are trivial. We infer from this that tlisbance in the vacuum propagates at the
speed of light. It also means that the field gebwy a circuit does not in any way depend
upon, under normal circumstances, the vacuum state potential field generated by a
given set of boundary conditions (the circuit) atie loading conditions (applied
potentials) floats on top of the vacuum solutidiie do not see the effects of the vacuum
potential, if there are any, because current ingntation measures from a state of zero
electric intensity or magnetic induction which wecognize as the definition of the
vacuum state.



3 Boundary effects of the Vacuum Conditions

Since the applied field floats upon the vacuumdfiabrmally without interaction, it
would seem reasonable that the only possible ptdcmteraction, should one exist,
would be where the equations break down, i.e. aeamgularity or discontinuity.

To consider the interactions between the circeidfiand the vacuum field near such an
occurrence, the equations of ECE-EM theory can Uieirgo a simpler format more

conducive to solution using the vacuum conditionst [defined in [1]. In particular, it
was found that

OxA=w0xA (3-1)
andA andwm are parallel. Therefore

o =KA (3-2)
with a scalar function k, and both terms of (3-&nigh. In particularA is a curl-free

potential and represents a non-turbulent vacuum @6 energy. In total the potentials
must satisfy the equations [1]

OxA =0 (3-3)
®xA =0 (3-4)
Hp-w@=0 (3-5)
0A

v wA=0 3-6
5 T (3-6)

Equations (3-3) and (3-4) state that the magneticigtion is zero, and (3-5) and (3-6)
state that the electric intensity is zero in thewan state. Let us assume that the
variables have values indexed by “1” at a bound&ingn we have from (3-2)

0, =KA, (3-7)

and from (3-5)

Ug -kA,g =0 (3-8)

The function k is in principle known from the vaecawsolution of ®. When there is a
metallic boundary withy =const, it follows



A, =0, (3-9)

I.e. there is no flow of potential through thisubdary. In the well known Casimir effect
[5], the force between two planar metallic plates neduced due to missing
electromagnetic wave modes between the plates. Milssing modes cannot be
counteracted by an inflow of vacuum energy as weehghown, in accordance with
experiment.

The boundary conditions of Equation (3-6) read

oA,
ot

+a,A, =0 (3-10)

which in case of harmonic time behaviour of therfexp(ist) with frequencys leads to
(iB+aw,)A, =0 (3-11)

This can either be fulfilled by no input flowA( = 0) or by identifying the imaginary part
of aw,, with an oscillatory frequency, modulated by spake-functions as described in
[1] in detall.

The example of the Casimir effect shows that temsf energy from vacuum to a circuit
probably requires an “open” geometry. For exampleiclosed metallic box, energy
cannot flow from the environment into the box, thmpeding transfer of larger amounts
of energy. A detailed analysis would require sajMine ECE wave equation

([1-rla=0 (3-12)

whereR is the scalar curvature. In cadRés constant, this is an eigenvalue equatiorAfor
which can be solved numerically. The solutions dbscthe allowed modes & for
given boundary conditions.

In full analogy to Eq. (2-1), the potential candpdit into the circuit and background part,

A=A, +A, , (3-13)

and Eq. (3-13) is fulfilled if the wave equationvaid for both potentials independently:



“R/)A, =0, (3-14)

|
(D‘Rb)AbZO, (3-15)

where Rr and R, are the eigenvalues for the circuit and backgroyudentials
respectively. It should be noted, however, thatrke addition of the eigenvalues in the
form

R=R, +R, (3-16)

produces cross-terms in Eq. (3.12). The combinatibaigenvalues behaves in a non-
linear manner.

4 Conclusions
In summary, we have that

1. The vacuum field acts independently from an eleatistandpoint from the circuit
field, but depends on the geometric arrangemetiteo€ircuit.

2. We can add the vacuum field to the circuit fieldheut consequence as long as it
is done appropriately.

3. The vacuum field satisfies the field equations &EHEM theory, thus verifying
that a disturbance in the vacuum propagates apéed of light.

4. Energy transfer from the vacuum probably requires eectrically open
environment.

If one is to observe resonances and singularitigle solutions to the equations, it may
be that the circuit field and the vacuum field hawde zero simultaneously at the same
spatial location, which may be why it is not obsehreadily. This may hold the key to
finding these events analytically.

Once a circuit has been built and set up and teahglisturbances have dissipated, the
vacuum field is defined and unalterable unless sloimg changes geometrically. This is
the case for example in the Bedini macHlewhere the circuit continually changes so
that changes in the vacuum field may get in pha#etive circuit field. In the case of the
Mexican device [7], the circuit appears to be gewoicaly fixed, but of course due to
electrical-mechanical interaction, etc. it will neoer change shape. The Mark Steven’s



toroidal coil [8] for example was said to vibrafhis then may allow the circuit and
vacuum fields to be put in phase hence allowingsuaUECE effects.
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