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The usual interpretations of solutions for Einstein’s gravitational field sat-
isfying the spherically symmetric condition contain anomalies that are not
mathematically permissible. It is shown herein that the usual solutions must
be modified to account for the intrinsic geometry associated with the relevant
line elements.

1. Introduction

The standard interpretation of spherically symmetric
line elements for Einstein’s gravitational field has not
taken into account the fundamental geometrical features
of spherical symmetry about an arbitrary point in a met-
ric manifold. This has led to numerous misconceptions
as to distance and radius that have spawned erroneous
theoretical notions.

The nature of spherical symmetry about an arbitrary
point in a three dimensional metric manifold is explained
herein and applied to Einstein’s gravitational field.

It is plainly evident, res ipsa locquitur, that the stan-
dard claims for black holes and Big Bang cosmology are
not consistent with elementary differential geometry and
are consequently inconsistent with General Relativity.

2. Spherical symmetry of three-dimensional
metrics

Denote ordinary Efcleethean∗ 3-space by E3. Let M3

be a 3-dimensional metric manifold. Let there be a one-
to-one correspondence between all points of E3 and M3.
Let the point O ∈ E3 and the corresponding point in
M3 be O′. Then a point transformation T of E3 into
itself gives rise to a corresponding point transformation
of M3 into itself.

A rigid motion in a metric manifold is a motion that
leaves the metric d`

′2 unchanged. Thus, a rigid motion
changes geodesics into geodesics. The metric manifold
M3 possesses spherical symmetry around any one of its
points O′ if each of the ∞3 rigid rotations in E3 around
the corresponding arbitrary point O determines a rigid
motion in M3.

The coefficients of d`
′2 of M3 constitute a metric ten-

sor and are naturally assumed to be regular in the region
around every point in M3, except possibly at an arbi-
trary point, the centre of spherical symmetry O′ ∈M3.

∗For the geometry due to Efcleethees, usually and abominably
rendered as Euclid.

Let a ray i emanate from an arbitrary point O ∈ E3.
There is then a corresponding geodesic i′ ∈ M3 issuing
from the corresponding point O′ ∈ M3. Let P be any
point on i other than O. There corresponds a point P ′

on i′ ∈ M3 different to O′. Let g′ be a geodesic in M3

that is tangential to i′ at P ′.
Taking i as the axis of ∞1 rotations in E3, there

corresponds ∞1 rigid motions in M3 that leaves only all
the points on i′ unchanged. If g′ is distinct from i′, then
the ∞1 rigid rotations in E3 about i would cause g′ to
occupy an infinity of positions in M3 wherein g′ has for
each position the property of being tangential to i′ at
P ′ in the same direction, which is impossible. Hence, g′

coincides with i′.
Thus, given a spherically symmetric surface Σ in E3

with centre of symmetry at some arbitrary point O ∈ E3,
there corresponds a spherically symmetric geodesic sur-
face Σ′ in M3 with centre of symmetry at the corre-
sponding point O′ ∈M3.

Let Q be a point in Σ ∈ E3 and Q′ the corresponding
point in Σ′ ∈M3. Let dσ be a generic line element in Σ
issuing from Q. The corresponding generic line element
dσ′ ∈ Σ′ issues from the point Q′. Let Σ be described in
the usual spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2 θdϕ2), (1)

r = |ŌQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence
also Q′ in Σ′. Therefore, θ and ϕ can be considered to be
curvilinear coordinates for Q′ in Σ′ and the line element
dσ′ ∈ Σ′ will also be represented by a quadratic form
similar to (1). To determine dσ′, consider two elemen-
tary arcs of equal length, dσ1 and dσ2 in Σ, drawn from
the point Q in different directions. Then the homolo-
gous arcs in Σ′ will be dσ′1 and dσ′2, drawn in different
directions from the corresponding point Q′. Now dσ1

and dσ2 can be obtained from one another by a rota-
tion about the axis ŌQ in E3, and so dσ′1 and dσ′2 can
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be obtained from one another by a rigid motion in M3,
and are therefore also of equal length, since the metric
is unchanged by such a motion. It therefore follows that
the ratio dσ′

dσ is the same for the two different directions
irrespective of dθ and dϕ, and so the foregoing ratio is
a function of position, i.e. of r, θ, ϕ. But Q is an arbi-
trary point in Σ, and so dσ′

dσ must have the same ratio
for any corresponding points Q and Q′. Therefore, dσ′

dσ
is a function of r alone, thus

dσ′

dσ
= H(r),

and so

dσ
′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2 θdϕ2), (2)

where H(r) is a priori unknown. For convenience set
Rc = Rc(r) = H(r)r, so that (2) becomes

dσ
′2 = R2

c(dθ2 + sin2 θdϕ2), (3)

where Rc is a quantity associated with M3. Comparing
(3) with (1) it is apparent that Rc is to be rightly in-
terpreted in terms of the Gaussian curvature K at the
point Q′, i.e. in terms of the relation K = 1

R2
c

since the
Gaussian curvature of (1) is K = 1

r2 . This is an intrin-
sic property of all line elements of the form (3) [1, 2].
Accordingly, Rc can be regarded as a radius of curva-
ture. Therefore, in (1) the radius of curvature is Rc = r.
Moreover, owing to spherical symmetry, all points in the
corresponding surfaces Σ and Σ′ have constant Gaussian
curvature relevant to their respective manifolds and cen-
tres of symmetry, so that all points in the respective
surfaces are umbilic.

Let the element of radial distance from O ∈ E3 be dr.
Clearly, the radial lines issuing from O cut the surface
Σ orthogonally. Combining this with (1) by the theorem
of Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2 θdϕ2). (4)

Let the corresponding radial geodesic from the point
O′ ∈ M3 be dg. Clearly the radial geodesics issuing
from O′ cut the geodesic surface Σ′ orthogonally. Com-
bining this with (3) by the theorem of Pythagoras gives
the line element in M3 as,

d`
′2 = dg2 + R2

c(dθ2 + sin2 θdϕ2), (5)

where dg is, by spherical symmetry, also a function only
of Rc. Set dg =

√
B(Rc)dRc, so that (5) becomes

d`
′2 = B(Rc)dR2

c + R2
c(dθ2 + sin2 θdϕ2), (6)

where B(Rc) is an a priori unknown function.

Setting dRp =
√

B(Rc)dRc carries (6) into

d`
′2 = dR2

p + R2
c(dθ2 + sin2 θdϕ2). (7)

Expression (6) is the most general for a metric man-
ifold M3 having spherical symmetry about some arbi-
trary point O′ ∈M3 [1, 3].

Considering (4), the distance Rp = |ŌQ| from the
point at the centre of spherical symmetry O to a point
Q ∈ Σ, is given by

Rp =
∫ r

0

dr = r = Rc.

Call Rp the proper radius. Consequently, in the case of
E3, Rp and Rc are identical, and so the Gaussian curva-
ture at any point in E3 can be associated with Rp, the
radial distance between the centre of spherical symme-
try at the point O ∈ E3 and the point Q ∈ Σ. Thus,
in this case, K = 1

R2
c

= 1
R2

p
= 1

r2 . However, this is not
a general relation, since according to (6) and (7), in the
case of M3, the radial geodesic distance from the centre
of spherical symmetry at the point O′ ∈M3 is not given
by the radius of curvature, but by

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r)

=
∫ r

0

√
B(Rc(r))

dRc(r)
dr

dr,

where Rc(0) is a priori unknown owing to the fact that
Rc(r) is a priori unknown. One cannot simply assume
that because 0 ≤ r < ∞ in (4) that it must follow that
in (6) and (7) 0 ≤ Rc(r) < ∞. In other words, one
cannot simply assume that Rc(0) = 0. Furthermore, it
is evident from (6) and (7) that Rp determines the radial
geodesic distance from the centre of spherical symmetry
at the arbitrary point O′ in M3 (and correspondingly so
from O in E3) to another point in M3. Clearly, Rc does
not in general render the radial geodesic length from the
centre of spherical symmetry to some other point in a
metric manifold. Only in the particular case of E3 does
Rc render both the Gaussian curvature and the radial
distance from the centre of spherical symmetry, owing
to the fact that Rp and Rc are identical in that special
case.

It should also be noted that in writing expressions
(4) and (5) it is implicit that O ∈ E3 is defined as being
located at the origin of the coordinate system of (4), i.e.
O is located where r = 0, and by correspondence O′ is
defined as being located at the origin of the coordinate
system of (5), i.e. using (7), O′ ∈ M3 is located where
Rp = 0. Furthermore, since it is well known that a
geometry is completely determined by the form of the
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line element describing it [4], expressions (4) and (6)
share the very same fundamental geometry because they
are line elements of the same form.

Expression (6) plays an important rôle in Einstein’s
gravitational field.

3. The standard solution

The standard solution in the case of the static vac-
uum field (i.e. no deformation of the space) of a sin-
gle gravitating body, satisfying Einstein’s field equations
Rµν = 0, is (using G = c = 1),

ds2 =

„
1− 2m

r

«
dt2−

„
1− 2m

r

«−1

dr2−r2(dθ2+sin2 θdϕ2),

(8)

where m is allegedly the mass causing the field, and upon
which it is routinely claimed that 2m < r < ∞ is an
exterior region and 0 < r < 2m is an interior region.
Notwithstanding the inequalities it is routinely allowed
that r = 2m and r = 0 by which it is also routinely
claimed that r = 2m marks a “removable” or “coor-
dinate” singularity and that r = 0 marks a “true” or
“physical” singularity [5].

The standard treatment of the foregoing line-element
proceeds from simple inspection of (8) and thereby upon
the following assumptions:

(a) that there is only one radial quantity defined on (8);

(b) that r can approach zero, even though the line-
element (8) is singular at r = 2m;

(c) that r is the radial quantity in (8) (r = 2m is even
routinely called the “Schwarzschild radius” [5].)

With these unstated assumptions, but assumptions
nonetheless, it is usual procedure to develop and treat of
black holes. However, all three assumptions are demon-
strably false at an elementary level.

4. That assumption (a) is false

Consider standard Minkowski space (using c = G =
1) described by

ds2 = dt2 − dr2 − r2dΩ2, (9)

0 ≤ r < ∞,

where dΩ2 = dθ2 + sin2 θdϕ2. Comparing (9) with (4) it
is easily seen that the spatial components of (9) consti-
titue a line element of E3, with the point at the centre of
spherical symmetry at r0 = 0, coincident with the origin
of the coordinate system.

In relation to (9) the calculated proper radius Rp of
the sphere in E3 is,

Rp =
∫ r

0

dr = r, (10)

and the radius of curvature Rc is

Rc = r = Rp. (11)

Calculate the surface area of the sphere:

A =
∫ 2π

0

∫ π

0

r2 sin θdθdϕ = 4πr2 = 4πR2
p = 4πR2

c .

(12)
Calculate the volume of the sphere:

V =
∫ 2π

0

∫ π

0

∫ r

0

r2 sin θdrdθdϕ =
4
3
πr3 =

4
3
πR3

p (13)

=
4
3
πR3

c .

Then for (9), according to (10) and (11),

Rp = r = Rc. (14)

Thus, for Minkowski space, Rp and Rc are identical.
This is because Minkowski space is pseudo-Efcleethean.

Now comparing (8) with (6) and (7) is is easily seen
that the spatial components of (8) constitute a spheri-
cally symmetric metric manifold M3 described by

d`
′2 =

(
1− 2m

r

)−1

dr2 + r2dΩ2,

and which is therefore in one-to-one correspondence with
E3. Then for (8),

Rc = r,

Rp =
∫ √

r

r − 2M
dr 6= r = Rc.

Hence, RP 6= Rc in (8) in general. This is because (8)
is non-Efcleethean (it is pseudo-Riemannian). Thus, as-
sumption (a) is false.

5. That assumption (b) is false

On (8),

Rp = Rp(r) =
∫ √

r

r − 2m
dr

=
√

r (r − 2m) + 2m ln
∣∣√r +

√
r − 2m

∣∣+ K, (15)

where K is a constant of integration.
For some r0, Rp(r0) = 0, where r0 is the correspond-

ing point at the centre of spherical symmetry in E3 to
be determined from (15). According to (15), Rp(r0) = 0
when r = r0 = 2m and K = −m ln 2m. Hence,

Rp(r) =
√

r (r − 2m) + 2m ln
(√

r +
√

r − 2m√
2m

)
. (16)

Therefore, 2m < r < ∞ ⇒ 0 < Rp < ∞, where Rc = r.
The inequality is required to maintain Lorentz signature,
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since the line-element is undefined at r0 = 2m, which is
the only possible singularity on the line element. Thus,
assumption (b) is false.

It follows that the centre of spherical symmetry of
E3, in relation to (8), is located not at the point r0 = 0
in E3 as usually assumed according to (9), but at the
point r0 = 2m, which corresponds to the point Rp(r0 =
2m) = 0 in the metric manifold M3 that is described
by the spatial part of (8). In other words, the point
at the centre of spherical symmetry in E3 in relation
to (8) is located at any point Q in the spherical sur-
face Σ for which the radial distance from the centre of
the coordinate system at r = 0 is r = 2m, owing to
the one-to-one correspondence between all points of E3

and M3. It follows that (8) is not a generalisation of
(9), as usually claimed. The manifold E3 of Minkowski
space corresponding to the metric manifold M3 of (8)
is not described by (9), because the point at the centre
of spherical symmetry of (9), r0 = 0, does not coincide
with that required by (15) and (16), namely r0 = 2m.

In consequence of the foregoing it is plain that the
expression (8) is not general in relation to (9) and the
line element (8) is not general in relation to the form (6).
This is due to the incorrect way in which (8) is usually
derived from (9), as pointed out in [6, 7, 8]. The stan-
dard derivation of (8) from (9) unwittingly shifts the
point at the centre of sphericaly symmetry for the E3

of Minkowski space from r0 = 0 to r0 = 2m, with the
consequence that the resulting line element (8) is mis-
interpreted in relation to r = 0 in the E3 of Minkowski
space as described by (9). This unrecognised shift actu-
ally associates the point r0 = 2m ∈ E3 with the point
Rp(2m) = 0 in the M3 of the gravitational field. The
usual analysis then incorrectly associates Rp = 0 with
r0 = 0 instead of with the correct r0 = 2m, thereby con-
juring up a so-called “interior”, as typically alleged in
[5], that actually has no relevance to the problem — a
completely meaningless manifold that has nothing to do
with the gravitational field and so is disjoint from the
latter, as also noted in [6, 9, 10, 11]. The point at the
centre of spherical symmetry for Einstein’s gravitational
field is Rp = 0 and is also the origin of the coordinate
system for the gravitational field. Thus the notion of an
“interior” manifold under some other coordinate patch
(such as the Kruskal-Szekeres coordinates) is patently
false. This is clarified in the next section.

6. That assumption (c) is false

Generalise (9) so that the centre of a sphere can be
located anywhere in Minkowski space, relative to the ori-
gin of the coordinate system at r = 0, thus

ds2 = dt2 − (d |r − r0|)2 − |r − r0|2 dΩ2

= dt2 − (r − r0)
2

|r − r0|2
dr2 − |r − r0|2 dΩ2

= dt2 − dr2 − |r − r0|2 dΩ2, (17)

0 ≤ |r − r0| < ∞,

which is well-defined for all real r. The value of r0 is arbi-
trary. The spatial components of (17) describe a sphere
of radius D = |r − r0| centred at some point r0 on a
common radial line through r and the origin of coordi-
nates at r = 0 (i.e. centred at the point of orthogonal
intersection of the common radial line with the spherical
surface r = r0). Thus, the arbitrary point r0 is the cen-
tre of spherical symmetry in E3 for (17) in relation to
the problem of Einstein’s gravitational field, the spatial
components of which is a spherically symmetric metric
manifold M3 with line element of the form (6) and cor-
responding centre of spherical symmetry at the point
Rp(r0) = 0 ∀ r0. If r0 = 0, (9) is recovered from (17).
One does not need to make r0 = 0 so that the centre
of spherical symmetry in E3, associated with the metric
manifold M3 of Einstein’s gravitational field, coincides
with the origin of the coordinate system itself, at r = 0.
Any point in E3, relative to the coordinate system at-
tached to the arbitrary point at which r = 0, can be
regarded as a point at the centre of spherical symmetry
in relation to Einstein’s gravitational field. Although it
is perhaps desirable to make the point r0 = 0 the cen-
tre of spherical symmetry of E3 correspond to the point
Rp = 0 at the centre of symmetry of M3 of the grav-
itational field, to simplify matters somewhat, this has
not been done in the usual analysis of Einstein’s grav-
itational field, despite appearances, and in consequence
thereof false conclusions have been drawn owing to this
fact going unrecognised in the main.

Now on (17),

Rc = |r − r0| ,

Rp =

Z |r−r0|

0

d |r − r0| =
Z r

r0

(r − r0)

|r − r0|
dr = |r − r0| ≡ Rc,

(18)

and so Rp ≡ Rc on (17), since (17) is pseudo-
Efcleethean. Setting D = |r − r0| for convenience, gen-
eralise (17) thus,

ds2 = A(C(D))dt2 −B(C(D))d
√

C(D)
2
− C(D)dΩ2,

(19)
where A(C(D)), B(C(D)), C(D) > 0. Then for Rµν = 0,
metric (19) has the solution,

ds2 =

(
1− α√

C(D)

)
dt2−
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−

(
1− α√

C(D)

)−1

d
√

C(D)
2
− C(D)dΩ2, (20)

where α is a function of the mass generating the gravi-
tational field [3, 6, 7, 9]. Then for (20),

Rc = Rc(D) =
√

C(D),

Rp = Rp(D) =
∫ √ √

C(D)√
C(D)− α

d
√

C(D)

=
∫ √

Rc(D)
Rc(D)− α

dRc(D)

=
√

Rc(D) (Rc(D)− α)+

+α ln

(√
Rc(D) +

√
Rc(D)− α√

α

)
, (21)

where Rc(D) ≡ Rc (|r − r0|) = Rc(r). Clearly r is a
parameter, located in Minkowski space according to (17).

Now r = r0 ⇒ D = 0, and so by (21), Rc(D = 0) = α
and Rp(D = 0) = 0. One must ascertain the admissible
form of Rc(D) subject to the conditions Rc(D = 0) = α
and Rp(D = 0) = 0 and dRc(D)/dD > 0 [6, 7], along
with the requirements that Rc(D) must produce (8) from
(20) at will, must yield Schwarzschild’s [12] original so-
lution at will (which is not the line element (8) with
r down to zero), must produce Brillouin’s [13] solution
at will, must produce Droste’s [14] solution at will, and
must yield an infinite number of equivalent metrics [3].
The only admissible form satisfying these conditions is
[7],

Rc = Rc(D) = (Dn + αn)
1
n ≡ (|r − r0|n + αn)

1
n = Rc(r),

(22)

D > 0, r ∈ <, n ∈ <+, r 6= r0,

where r0 and n are entirely arbitrary constants.
Choosing r0 = 0, r > 0, n = 3,

Rc(r) =
(
r3 + α3

) 1
3 , (23)

and putting (23) into (20) gives Schwarzschild’s original
solution, defined on 0 < r < ∞.

Choosing r0 = 0, r > 0, n = 1,

Rc(r) = r + α, (24)

and putting (24) into (20) gives Marcel Brillouin’s solu-
tion, defined on 0 < r < ∞.

Choosing r0 = α, r > α, n = 1,

Rc(r) = (r − α) + α = r, (25)

and putting (25) into (20) gives line element (8), but
defined on α < r < ∞, as found by Johannes Droste in

May 1916. Note that according to (25) (and in general
by (22)), r is not a radial quantity in the gravitational
field, because Rc(r) = (r − α) + α = D + α is really the
radius of curvature in (8), defined for 0 < D < ∞.

Thus, assumption (c) is false.
It is clear from this that the usual line element (8) is

a restricted form of (22), and by (22), with r0 = α = 2m,
n = 1 gives Rc = |r − 2m| + 2m, which is well defined
on −∞ < r < ∞, i.e. on 0 ≤ D < ∞, so that when
r = 0, Rc(0) = 4m and RP (0) > 0. In the limiting case
of r = 2m, then Rc(2m) = 2m and Rp(2m) = 0. The
latter two relationships hold for any value of r0.

Thus, if one insists that r0 = 0 to match (9), it follows
from (22) that,

Rc = (|r|n + αn)
1
n ,

and if one also insists that r > 0, then

Rc = (rn + αn)
1
n , (26)

and for n = 1,
Rc = r + α,

which is the simplest expression for Rc in (20) [6, 7, 13].
Expression (26) has the centre of spherical symmetry

of E3 located at the point r0 = 0 ∀ n ∈ <+, correspond-
ing to the centre of spherical symmetry of M3 for Ein-
stein’s gravitational field at the point Rp(0) = 0 ∀ n ∈
<+. Then taking α = 2m it follows that Rp(0) = 0 and
Rc(0) = α = 2m for all values of n.

There is no such thing as an interior solution for the
line element (20) and consequently there is no such thing
as an interior solution on (8), and so there can be no
black holes.

7. That the manifold is inextendable

That the singularity at Rp(r0) ≡ 0 is insurmountable
is clear by the following ratio,

lim
r→r±0

2πRc(r)
Rp(r)

= lim
r→r±0

2π (|r − r0|n + αn)
1
n

Rp(r)
= ∞,

since Rp(r0) = 0 and Rc(r0) = α are invariant.
Hagihara [15] has shown that all radial geodesics that

do not run into the boundary at Rc(r0) = α (i.e. that
do not run into the boundary at Rp(r0) = 0) are geodes-
ically complete.

Doughty [16] has shown that the acceleration a of a
test particle approaching the centre of mass at Rp(r0) =
0 is given by,

a =
√
−g00

(
−g11

)
|g00,1|

2g00
.
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By (20) and (22), this gives,

a =
α

2R
3
2
c

√
Rc(r)− α

.

Then clearly as r → r±0 , a → ∞, independently of the
value of r0.

J. Smoller and B. Temple [10] have shown that the
Oppenheimer-Volkoff equations do not permit gravita-
tional collapse to form a black hole and that the alleged
interior of the Schwarzschild spacetime (i.e. 0 ≤ Rc(r) ≤
α is therefore disconnected from Schwarzschild spacetime
and so does not form part of the solution space.

N. Stavroulakis [17, 18, 19, 20] has shown that an
object cannot undergo gravitational collapse into a sin-
gularity, or to form a black hole.

Suppose 0 ≤
√

C(D(r)) < α. Then (20) becomes

ds2 = −
(

α√
C
− 1
)

dt2 +
(

α√
C
− 1
)−1

d
√

C
2
−

−C(dθ2 + sin2 θdϕ2),

which shows that there is an interchange of time and
length. To amplify this set r = t̄ and t = r̄. Then

ds2 =
(

α√
C
− 1
)−1

Ċ2

4C
dt̄2 −

(
α√
C
− 1
)

dr̄2

−C(dθ2 + sin2 θdϕ2),

where C = C(t̄) and the dot denotes d/dt̄. This is a time
dependent metric and therefore bears no relation to the
problem of a static gravitational field.

Thus, the Schwarzschild manifold described by (20)
with (22) (and hence (8)) is inextendable.

8. That the Riemann tensor scalar curvature
invariant is everywhere finite

The Riemann tensor scalar curvature invariant (the
Kretschmann scalar) is given by f = RµνρσRµνρσ. In
the general case of (20) with (22) this is

f =
12α2

R6
c(r)

=
12α2

(|r − r0|n + αn)
6
n

.

A routine attempt to justify the standard assumptions
on (8) is the a posteriori claim that the Kretschmann
scalar must be unbounded at a singularity [5, 21]. No-
body has ever offered a proof that General Relativity
necessarily requires this. That this additional ad hoc
assumption is false is clear from the following ratio,

f(r0) =
12α2

(|r0 − r0|n + αn)
6
n

=
12
α4

∀ r0.

In addition,

lim
r→±∞

12α2

(|r − r0|n + αn)
6
n

= 0,

and so the Kretschmann scalar is finite everywhere.

9. That the Gaussian curvature is everywhere
finite

The Gaussian curvature K of (20) is,

K = K(Rc(r)) =
1

R2
c(r)

,

where Rc(r) is given by (22). Then,

K(r0) =
1
α2

∀ r0,

and
lim

r→±∞
K(r) = 0,

and so the Gaussian curvature is everywhere finite.
Furthermore,

lim
α→0

1
α2

= ∞,

since when α = 0 there is no gravitational field and
empty Minkowski space is recovered, wherein Rp and Rc

are identical and 0 ≤ Rp < ∞. A centre of spherical sym-
metry in Minkowski space has an infinite Gaussian cur-
vature because Minkowski space is pseudo-Efcleethean.

10. Conclusions

Using the spherical-polar coordinates, the general so-
lution to Rµν = 0 is (20) with (22), which is well-defined
on

−∞ < r0 < ∞,

where r0 is entirely arbitrary, and corresponds to

0 < Rp(r) < ∞, α < Rc(r) < ∞,

for the gravitational field. The only singularity that is
possible occurs at g00 = 0. It is impossible to get g11 = 0
because there is no value of the parameter r by which
this can be attained. No interior exists in relation to
(20) with (22), which contain the usual metric (8) as a
particular case.

The radius of curvature Rc(r) does not in general
determine the radial geodesic distance to the centre of
spherical symmetry of Einstein’s gravitational field and
is only to be interpreted in relation to the Gaussian cur-
vature by the equation K = 1/R2

c(r). The radial geo-
desic distance from the point at the centre of spherical
symmetry to the spherical geodesic surface with
Gaussian curvature K = 1/R2

c(r) is given by the proper
radius, Rp(Rc(r)). The centre of spherical symmetry in
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the gravitational field is invariantly located at the point
Rp(r0) = 0.

Expression (20) with (22) (and hence (8)) describes
only a centre of mass located at Rp(r0) = 0 in the grav-
itational field, ∀ r0. As such it does not take into ac-
count the distribution of matter and energy in a gravi-
tating body, since α(M) is indeterminable in this limited
situation. One cannot generally just utilise a potential
function in comparison with the Newtonian potential to
determine α by the weak field limit because α is subject
to the distribution of the matter of the source of the grav-
itational field. The value of α must be calculated from
a line-element describing the interior of the gravitating
body, satisfying Rµν − 1

2Rgµν = κTµν 6= 0. The interior
line element is necessarily different to the exterior line
element of an object such as a star. A full description of
the gravitational field of a star therefore requires two line
elements [22, 23], not one as is routinely assumed, and
when this is done, there are no singularities anywhere.
The standard assumption that one line element is suf-
ficient is false. Outside a star, (20) with (22) describes
the gravitational field in relation to the centre of mass of
the star, but α is nonetheless determined by the interior
metric, which, in the case of the usual treatment of (8),
has gone entirely unrecognised, so that the value of α is
instead determined by a comparison with the Newtonian
potential in a weak field limit.

Black holes are not predicted by General Relativity.
The Kruskal-Szekeres coordinates do not describe a coor-
dinate patch that covers a part of the gravitational mani-
fold that is not otherwise covered - they describe a com-
pletely different pseudo-Riemannian manifold that has
nothing to do with Einstein’s gravitational field [6, 9, 11].
The manifold of Kruskal-Szekeres is not contained in the
fundamental one-to-one correspondence between the E3

of Minkowski space and the M3 of Einstein’s gravita-
tional field, and is therefore a spurious augmentation.

It follows in similar fashion that expansion of the
Universe and the Big Bang cosmology are inconsistent
with General Relativity, as is easily demonstrated [24,
25].
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