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Abstract

The equations of the Einstein Cartan Evans fieldlehofor a Minkowski frame of reference,
have been modified to include non-linear termshe field equations, derived from the first
Bianchi identity of Cartan geometry. It is showrttliin this case the non-linear field intensity
definitions provided by the Cartan identity fordimm, the first structure equation, behave in a
non-linear fashion also. The full system of equatids provided for the ECE non-linear

electromagnetic theory.

1. Introduction

Physicists (and engineers) often take coordinastesys, shift the origins, change the length
scales, and use all sorts of modifying transforamati to distort mathematical fields into
something suiting them at the time. These modifyfumctions or operations are termed gauge
transformations and fields that are invariant testh operations are terms gauge invariant [1].
Classical electromagnetism has many examples ®f Tinie ECE field theory was thought to not
be gauge invariant because of its inherent linkricabsolute origin or zero point for the tetrad
used to define the fields. This info was mainlyided from the ECE wave equation [2]. It will
be shown that such is not the case for the fielchBgns, that in fact, the first structural equatio
of Cartan, the basis for relating field intensitynétions such as electric and magnetic field
strengths for example, to field potentials is qaiteenable to re-gauging. After that we derive a
non-linear form of the field equations by re-defigithe ECE charge and current densities.
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2. Gaugetransformation

Let us first look at the so-called zero point fo€Cartan field The torsion tensadf¢,, of Cartan

geometry is given by the first Cartan structureatigun [2]
Ta;w = uqav - avqau + waubqbv - waqubu (1)

with spin connection&?,,. The Cartan tetradj; maps one space-time referenced by the index

n n

u" to another referenced by the indéx" . Often one spacetime is taken as flat (Minkowski
typically), and the other is a general space-timéhe second space-time can be without an
orthonormal basis, etc. Note that existing ECE ted@cagnetic theory was developed using a
cyclic coordinate system [2]. We will assume tha¢ space-time of the observer is a more

computationally friendly Minkowski space-time, givby theu, v indices.

There is a non-trivial state for the Cartan tetnddch exists when the torsion is zero (we will

call it the ground state). It is defined by thengaspin connection®,,, and boundary conditions

as the torsion state but is free of sources, sikstherwise material influences.

This state, indexed by the supersc(ighd) is given by the following

a(gnd) _

9,4 Lg% 4 e

b d b d
ubqv(gn)_ a q (gnd) =0 (2)

Wyp u

Equation (1) can then be re-written, by subtractggation (2) and defining a new tetrad, one

measured from a non-zero datum;

Q% = q% — ¢ (3)
to get
Ta;w = auQav - anau + waubev - wavbeu- (4)

If one lets the vector potential in four dimensgpace be proportional @, [2], it is apparent
that the vacuum state has been removed from coasime by a simple shift of the zero point. It
is interesting to note, that virtually all field Besrements, especially evident in

electromagnetism, are made from the “ground” stat@ch is taken to be zero. It has been



shown [3] that the vacuum state given by ECE aedecagnetism, is not a simple zero state, but

is rich in longitudinal wave functions in potential

A second gauge transformation, as shown in whhivisl, allows the non-linearities of equations
(1) or (4) to be eliminated. The fundamental theoref forms [4], which leads to the

development of geometries called Rahm cohomolagjieghich the Minkowski space-time is an
example, states that if the exterior derivativa ébrm is zero, then the form is exact. This & th
Poincare Lemma. In the notation of differentiabgpetry, the exterior derivative of a formis

closed when
dA =0 (5)

By the Poincare Lemma, the form is then exact,rgine

d(dA) =0 (6)
or
B=dA 7)

where B is a derived field quantity. This is essemtiminates the non-linear terms from

equation (1).

In three dimensional Cartesian geometry, this is\adent to

if V-4=0 then B=VxA (8)
and
if VXxA=0 then A=V¢ 9

whereA andB are vectors ang is a scalar.

For those readers not experienced in Cartan diffedegeometry, let us look at the vector
formulation of Cartan’s first structural equatios @eveloped for the electromagnetic equations

of ECE theory. The torsion tensor expressed ieetliimension vector format becomes [5]

E¢ = -7 - 25— 08, A" + w%h?, (10)



B* =V X A% — 0% x A°. (11)

The superscript “a” is the polarization of the @lemagnetic field, with the standard model

having this as a single value hence not shodfhand¢“ are the vector and scalar potentials for
each polarizationE* andB® are the electric and induction field intensitiesd a§, andw?, are

the scalar and vector spin connections, respegtivile Faraday and Gauss law are derived

from the Bianchi identity which is in vector form:

oB%

= =0, (12)

VXE*+
V-B*=0. (13)

At first glance, the appearance of the potentiath absolute terms in (10) and (11), as opposed
to that of derivatives in space and time as instiaedard formulation, would suggest that these
definitions cannot be re-gauged. However, theiegiibn of Gauss’s Law given by equation

(13) to the field intensity definition of equati¢hl) shows that

V- (wgxAP) =0 (14)
and using well know results of vector calculus,aopn (8), we have

w% X A =V x F@ (15)

with a new fieldF¢. Substitution of this, and equation (10) to Farasldyaw of equation (12)

gives

Vx (-7 - ZE — 034" + 0% ) +

9(VxA*-VxF%) 0
at B

at

which simplifies to



OF%
V X (—wgbAb + wﬁqbb — ?) =0. (16)

Again using well known vector calculus conceptegiby equation (9), we can write
—wA? + i — 5 = Tye (17)

by introducing a new scalar potentigt. If we change variables and write

Pt = 1 _ (18)
and
AL =A% —F°, (19)

one immediately has for equations (10) and (114ifreal representations of the field intensities,

E = -ppe -2 (20)

B* =V X A°*. (21)

These have the same form as the standard modealtefs for the electric and magnetic fields.
Through mathematically acceptable transformatioms)-linear field elements inherent in the
first structural equation disappear when expresssidg conventional vector mathematics,

irrespective of the degree of polarization beingsidered if the right hand side of equations (12)

and (13) are zero.
3. Non-Linear Field Equations

Next we will show how non-linear terms can be foumdhe ECE field equations, derived from

the first Bianchi identify of Cartan geometry. ihdicial form, this identity is [2]

0, T + w?,, T =R ™, (22)



R,*?" is the Cartan curvature tensor.

This and its equivalent Hodge dual equation [2]

0, T + w®,, TP = }?ﬂa“" (23)
define the ECE field equations.

The inhomogeneous curreift’ has been until now, defined as

jev = Ruauv _ waubTa’w (24)
resulting in a set of linear field equations

9, T = jiv . (25)
The corresponding homogeneous field equationssudtref equation (23), are

g, Tamv = RV — @, Taw = j&v ~ 0 (26)

wherejjV is the homogeneous current, given experimentallyet zero or immeasurably close to
it. For a single polarization these are the fielguations of the standard model, and are
completely linear.

If we re-define the currents of equations (25) &) by

ji¥ =R, (27)
and
j# =R =0, (28)

the field equations become
auTauv + waubTbuv — Rﬂauv — anv (29)
and its Hodge dual

0, T 4 @, TOW = RO = j&" ~ 0. (30)



Using methods developed and presented earliereffjations (29) and (30) give non-linear

electromagnetic field equations as (see Appendix I)

V-B*—w% B’ =0, (31)
VX E+22 4+ 0f,B” - wh X E? =0, (32)
V-D* — w% - Db = p?, (33)
VxH® -2 _ 38, Db — @ x HY = J° . (34)

at

D¢ is the electric displacement aH¢ is the magnetic field intensity.

These equations are rich in non-linearities whitéo aappear in the corresponding wave-

equations. To see the wave nature of these egsdtidree space, one writes
@ = u,H*, (35)
@ = g EC (36)
wherey,, €, are the permeability and permittivity of free spac

As in traditional electromagnetic theory [6] aftengthy vector analysis (see Appendix II) we

get the non-linear coupled wave equations

2 1 awabEb 1 9%E% b b a b b _ aje Vp
74 Ea—C—Z#—C—ZW—zw% E +ZX(D‘;)XE —Ew‘},xB _wagbB —M0?+g, (37)
a(wl, BY 92Ba 3(w® xEP
ppe 4 L2CEE)  LUPT_ gyq . b1V x e x BY + S0Py Ly B =y x g . (38)

These two vector equations together with the dafims (10) and (11) are insufficient to give a
complete solution. The ECE antisymmetry equatifsjsoffer additional constraints to help

complete the solution. These equations for ECElelmagnetism are

% — V¢ + w§, A" + wip? =0, (39)

A% 0A%
a—x; a—x' + w4 + whAY =0 . (40)



Equation (39) is expressed in traditional vectarfat. Equation (40) cannot be expressed in
vector format using standard vector operators. siMggest the following “softer” alternative.

From the Tetrad postulate of Cartan geometry, tmmection for a givetia" is given by [2]
Fauv = auqav + waubqbv- (41)

The trace of an antisymmetric matrix is always zémcany reference frame. Applying this to

they, v indices, we see

0,9% + w%pq% =0 summed over u = 0,1,2,3 : (42)
Applied to the electromagnetic portion of ECE thegdhis becomes

9,A% + wip Ab =0 summed over p=10,1,2,3 . (43)
In vector form this is

Equations (39) and (44) add four equations to §stesn which is sufficient in principle to

specify a complete solution.

We note in passing that the divergence of (39) dddé¢he time derivative of (44) gives

10792 | 3w ppltw]a’)

—72pt + 22 b 4 V- (w§,A” + @ §P) =0 (45)

4. Conclusions

The system of equations provided by (10), (11);38lor 37-38), (39) and (44 or 45) constitute
the full set of equations for the ECE electromaigriéeory. In part Il of this paper, a reduction
in the number of equations in this set will be pded, making numerical solutions much more

feasible. Examples of solutions will also be preddand experimental tests will be proposed.



Appendix |

Homogeneous Equations

We start with the Hodge Dual of the first Bianathémtity,

0,T + waub’f‘b‘“’ ~0. (1-1)
Electromagnetism is associated with this equatioddiining the electric tensor as

Fbuv — A buv (1-2)
whereA©® is a universal constant relating geometry to tgsjzal electromagnetic field
and

Fouy = Lgwpopa, (1-3)
is the Hodge dual of the electromagnetic tensor [5]

In matrix form, the anti-symmetric field tensorgizen by [5]

0 —B* —B? —B3
T =
Famv — | ¢ ¢ (1-4)
0 E
c
| o |
In vector form, following [1,2,5]
10
%= (G307). ()
0% > (22, -0%) . (1-6)
Forv=20
0,F° + (—w% ,)FP ~ 0 for p=123. (1-7)

Given the antisymmetry gf®V this is



0,F* + (—w% ,)F?% ~ 0 for u=123. (1-8)
Using equation (1-4) this then becomes

V-B*—w% B’ =0. (1-9)
Forv =1,

60(13'“01) + (%) (ﬁvb01) n az(ﬁaﬂ) + (—w8 b)p'b21 + 057931 4 (—ws b)ﬁb31 ~0,

using antisymmetry and (1-4), this becomes

—_EAQ2

12 gy + (252) (=B + 0, (- ) + (w3 (- ) + 0 (-=5) + s (- )~ 0

cadt c c

or

Eaz

L+ (42 07+, () =00 () -0t (B) - 80 (5) =0
This generalizes to

VX E®+27 + 0g,B" — % x E? =0 (1-10)

Inhomogeneous Equations

The inhomogeneous field equation is the electromtgiform of the first Bianchi identity,
9,T%" + w®,, TPV = jav . (1-11)
Now, the electromagnetic field tensor is given by

G = 297, Faph (1-12)
where Ea‘”,;,l is the four space permeability-permittivity tenso

For an isotropic material,

G%° = gF%0 forv =0, 0 =1,2,3 (1-13)



GV = uF*v foro,v =1,2,3.
We thus get

aﬂGaav + waGbiav =j1av .

In matrix form

0 -Dp! —Dp? -D3
—H3 H2
G“W—[ b _}

a
— Cc Cc
_ygl
I
c
0
In addition to (1-5) and (1-6) we have
—(pe L2
J% = (pa' c)
Forv = 0, equation (1-15) becomes

aJGaaO + waobiaO =anO ]

which becomes upon using (1-16) and antisymmetry

0,(D9°) + (—w%,) (D?°) = p©.
Generalizing, thisis
V-D*—w} D" =p®.

Forv = 1, equation (1-15) becomes

aOGa01 + waObi01 + azGa21 + (_(‘)aZb)Gb21 + a3Ga31 + (—wa3b)6b31 =jlal

which gives

120+ () 0+, ()4 o) () o

(1-14)

(1-15)

(1-16)

(1-17)

(1-18)



or

0+ (5) 0= () + 0, () + @i () - i) (5) T
This generalizes to
Ux HY -2 8, Db — 0% x HP = J° . (1-19)

at



Appendix 11

From equations (31)—(36)

V-B*—w% B’ =0, (2-1)

X +—+a) — W X =0, -

V X E© a, BY P X EP =0 2-2

V-E® — @ - EC =’;—:, (2-3)
1 0E“ 1

YXB® — S — — < wi,E” — 0, X B? = oJ* . (2-4)

Taking the Curl of ((2-2)

Vx (VX E?) +Vx 2=+ Vxwf,B” —VxwlxE” =0.

This expands, using the well known vector iderfotythe double curl,
Vx(VxA)=-V?A+VV-4

and the time derivative of (2-4),

12":t+1w0bEb+w X B” + 1] ) + ¥ X w§,B” -V X w4 X E* = 0.

~V2EC+ YV EC 42 (5
Using equation (2-3) fo¥ - E¢ this becomes

a
—VzEa+v(w‘;,-Eb+p—) 222+
v o

7 (5 + F 0SB + 0 X BY + i) ) + U X 0, B Y X wf X E” = 0.
Rearranging terms

4 a
VzEa_____——Yw%'Eb+Z><w‘7,><Eb—%w‘;,bi—yxwgbBb =#0%+§_§_ (2-5)

YXVXB*——=——-ZVXwi,E’ —V X 0} x B® = 1,V x J* . (2-6)

Expanding the double curl and using (2-2)Yox E* gives



aB%

—V2B% +VV- B — s
- — c2 at

a pb a b
—Wq pB+wy XE )

— SV X 0 ,E? — ¥ X 0% X BY = oV x J°.

Using (2-1)

1 0%B% | 1 d(w?,BP-w%xEP) 1 a b a b a
Z oz Tz ot SV XwopE” —VX @y X B =pVX]J

~V?B* + Vw5, - B” +
or upon rearranging

1 3(w%xED)

SRS L U X 0 P + Y X 0% X BY = —po¥ xJ° . (2-7)
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