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Abstract

In this paper we present an example of a specific metric which ge-
ometrizes explicitly a light-like four-vector potential field (Evans-Vigier
field). We define the concepts of ‘semilocal’ and ‘complete’ geometriza-
tion and show that a light-like vector field has the same geometrical
structure as a gravitational Kerr field. With this background in mind
we discuss a theoretical proposition that a rotating body generates,
besides a special gravitational field, a magnetic-type gauge field which
might be identified with a geometrized Evans-Vigier field. We finally
present a discussion which inform us that a classical Evans-Vigier field
represents a novel type of field because we cannot identify it with any
of the known electromagnetic fields.

Key Words: light-like vector potential, force-free field, complete ge-
ometrization.

1 INTRODUCTION

In this contribution, we construct a metric which appears appropriate for a
geometrization, within the framework of a Riemannian spacetime, of a light-
like 4-vector potential field which can be assigned to an electromagnetic-type
field. Such an exotic field with a 4-vector potential 4, satisfies the relation

A A% = 0 (1)

and is denoted by us as an Fuans-Vigier field since in accordance with our
information it emerged for the first time in the work of these authors in



connection with the hypothesis of the existence of a special kind of magnetic
field (see, for instance [1]). )

The starting point is the well known approach to the geometrization of
physical fields involving the construction of spacetime geometries (the so
called force-free geometries) within which the geodesic equation proves to
be identical to the equation of motion of a particle when interacting with
such (nongravitational) fields. This method derives in fact from the gener-
alized FEinstein’s equivalence principle which asserts that “any trajectory is
a geodesic of some geometry” [2]. Furthermore, the laws of motion, in the

case of interacting particles, are given by the differential equations of the’

geodesics for the metric in question at the instantaneous position of each
particle [3].

Pursuing this subject, we observe that for the formulation of the geodesic
equations also in the presence of nongravitational forces, some efforts have
been directed towards applying changes to the metric (see, for instance, [4],
[5]) and other efforts to modifications of the connection {6}, [7], in a Rie-
mann or a Riemann-Cartan spacetime. There appeared also papers which
consider the possibility of applying a Finsler [8] or a Randers geometry (9]
or a fractal spacetime geometry [10]-[12] in order to establish unitary theo-
ries of gravitation and electromagnetism in conjunction with a probabilistic
interpretation of the geometry of the background spacetime.

However, all these alternative interpretations of force-free geometries
have not yet reached the same level of elaboration and experimental veri-
fication as is the case for Einstein’s general theory of relativity the formal
structure of which has continuously invited the development of gauge theo-
ries. These are the reasons that why we maintain in the present work the
framework of a Riemannian spacetime which helps us to geometrize a vec-
torial field. We propose a geometrization of a vectorial field in the sense
that the associated physical quantity (e.g., the four-vector potential A,)
enters directly into the metric which may be interpreted, alternatively, as
an ‘interior’ (Tog # 0) or ‘exterior’ (Tg = 0) solution of Einstein’s equa-
tions. However, from an Finsteinian point of view, the field defined by
Ay is completely (truly) geometrized (like the gravitational field itself) if it
leads to a determination of the geometry of the (curved) vacuum space-
time in which no other (non-geometrized) matter manifests its presence in
conjunction with a non-zero energy-momentum tensor. We emphasize that
the physical quantities (e.g., density, pressure, electromagnetic field tensor
etc) which generally appear on the right hand side of Einstein’s equations
represent non-geometrized quantities, 7.e., the source of the (geometrized)
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gravitational field.

In the present paper we adhere to the Einstein’s general relativity and
thus the energy and momentum of the geometrized Evans-Vigier field are
encapsulated solely in the pseudotensor ¢,3 on the same geometrical foot-
ing as any gravitational field. We recollect that the general relativity is a
very special non-Abelian gauge theory and thus it is possible that a truly
spacetime geometrization can be applied also to a non-Abelian analogue of
the electromagnetic field. The Yang-Mills field may serve as such a field.

We parenthetically note that in a generalisation of Einstein’s gravity
theory which assumes a non-zero stress energy of the gravitational field
(see, e.g., [13] and its criticism in [14]) we can assert that there exists a
third alternative geometrization, but we will not refer to this aspect here.

Attempts have also been made to mix directly the standard symmet-
ric Riemannian metric tensor with an antisymmetric (electromagnetic) field
tensor, but the new nonsymmetric metric cannot achieve a real geometriza-
tion of the electromagnetic field |[15].

Even if, for the time being, we cannot propose a firm experimental pro-
gram to detect or generate an Evans-Vigier field, the latter retains the merit
of enhancing the search of exotic forms of gauge fields in Abelian and non-
Abelian gauge theories. Moreover, a possible existence of a light-like 4-vector
electromagnetic field would be a proof that the most important metrics of
general relativity, Schwarzschild and Kerr solutions, (which in Eddington
coordinates are described also by light-like four vectors) have an electromag-
netic analogue. Thus, the Kerr metric, which represents the gravitational
field exterior to a spinning source which ‘drags’ space around with it, has the
same geometrical structure as a geometrized Evans-Vigier field. This calls
for a possible general relativistic physical explanation of the mutual relation
between a magnetic dipole (or, generally, another ‘gauge dipole’ described
by a light-like non-abelian vector potential) and the angular momentum, as
observed already in the case of astrophysical bodies (see the Wilson-Blackett-
Ahluwalia- Wu relation [16]).

On a microscopic level, the Evans’ optical (light) magnet [17] produced
by a circularly polarised light beam appears as a natural and physically
possible hypothesis. A search for cyclically symmetric equations, similar to
spin angular momentum relations but now refering to a magnetic-type field,
seems also tempting from a geometrical point of view. Of course, as for
gravitation or perhaps for the entire field of physics we do not yet know the
physical intrinsic mechanism of such a magneto-rotation induction: ‘rotation
generates magnetic-type field and magnetic field generates rotation’, and yet



we attempt to model and describe it here.

A simple experimental proposal for the verification of these hypotheses
may be the detection of an Aharonov-Bohm effect as arising, for example,
in the usual two-slit electron diffraction experiment in which the solenoid
is replaced by a rotating body. (For a recent overview of microturbines
see {18], and for a two-slit electron diffraction experiment with a rotating
superconductor see [19].) These explorations might be extended to an as-
trophysical scale in which a natural cosmic gravitational Aharonov-Bohm
situation may arise [20]. Indeed, the gravitational field of a rotating astro-
~ physical lens object plays the role of both a double slit (by its electriclike
and curvature inducing effects by gravity) and an ‘external’ field (with a
magneticlike contribution of the gravitation). A proposal for a laboratory
experiment for an observation of a gravitational Aharonov-Bohm effect in
conjunction with photons is described in {21].

The section ‘Physical Content of the Evans-Vigier Condition’ tries to
construe an answer to the very disputed question: What is the Evans-Vigier
B®) field?

In the final section we present a discussion on the possibility of identifying
an Evans-Vigier field within the set of known electromagnetic fields.

2 A SPECIAL METRIC AND BASIC RELA-
TIONS

Let us consider a null-like four-vector with components

Au(2?) = (Ao, A1, Az, A3) = (Ao, A). (2)
We denote by
A2 = A, A0 (3)

its Minkowskian module in which

neg = [+1, —1, =1, —1] (4)

is the Minkowski (flat) diagonal metric. We should mention that A4 (z?) is
here a standard spacetime vector which may represent the vector potential
of an electromagnetic-type gauge field. For the moment, we cannot foresee
if A, may be associated with a massive or a zero-mass field or if we must
include the subject of a gauge invariance. Consequently, all the calculations
are given in the tangent bundle of spacetime.
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We propose to study under which conditions a metric g,p having the
special form

gap = Nap + KA Ap, (5)

where K is a constant still to be determined, can define an Evans-Vigier

field.

The determinant of the metric tensor gng is given by

det(gag) = g = — (11 KA?) = -1 (6)
and thus, the inverse (contravariant) metric is
g*P = ’r)aﬂ — KA“AP. (7)

The metric (5) is similar to the one which describes a weak gravitational
field, i.e.,

v = My + h;u/’ g = T}HU — hh. (8)

However, for the time being we do not impose yet any condition on the value
or the strength of the term K AyAg. There follows that

A% = P Ag =45 n*PAsAg — ¢*PAaAp =0 (9)

and thus the indices of A% may be raised and lowered with either the metric
gap or the Lorentz metric nyg. It is easy to show that

AaA®p= AgA®5=0 (10)

where the ordinary partial derivatives are denoted by commas (or alter-

natively by 0, and 8/0z%), and covariant derivatives by semicolons. The
Christoffel symbols are

% = 9718y,

= —Kg* [(AUAg),ry + (AOA’Y),B - (ABA’Y)yU]

— DO =

= Kg [Ang + AyBpo + Ac(Apy + A%B)]

1

= §K77(m [ABB"/U + AyBpo + Ag(Apgqy + A%B)]
1 .

—§K2A"‘A”(ABBW + A, Bgs) (11)



where

Byﬂ — Aﬁ,y - AL/}’B (12)
and [3v, o] is the Christoffel symbol of the first kind.
Because g = constant = —1, it follows that
Go =0 (13)

and thus the Ricci tensor is given by

Rpy = —naa[ﬁ’)’ao'],a ! K[AD‘AU[,Q%O-]’&

+ (A%AU + AaAf;) (3, a]] + 0| Bo, pllya, V]

~K (™A% AY + n°Y A% A*) [Bo, pllye, v]

+ KZAO‘A”AUAl’[ﬁa7 vy, v

KRy + K%Ro+ K°Ra+ K*R4. (14)
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9 — 77/1”,*/;(1/;7 gwj = 77“” — B (8)

- (9)
s
////
a A%, (10)
3, = o*lovel
1 / ‘
= 5K [(A546) 1 1 (AoAy) 5 = (ApAs) ]
1
= 57\’9(“7[ pBro + AyBps + Ao(Apy + A%B)]
1 )
= §K”I(w[ Bya + Aﬁﬁﬂo + Ag(Agy+ A“rﬁ)]
1 £ i
~§[(2AQA0§A5BWU+AWBQU) / (11)
/ y
/ /
Bfﬁ = Ag, — Augp / (12)
/w """ /.\ (13)
,«/'//, |
Rpy = ‘77(17[13%‘7],&4 b5 AaAa[ﬂ’YvU],a
1 (A%A7 4 A7) 187,01 + 5 B0, pl e, v)
—K (n*A7AY + 07V AAY) [Bo, ul[ye, v]
+K2AQA”AUAVWU, wllye, v|
= KRy +K2?Ro+ K>Ry + K*Ry. (14)

3 FORCE-FREE FIELD AND A SEMILOCAL
GEOMETRIZATION

Introducing the parameter s defined by

ds® = gogdx®dzP (15)

2



the equations of geodesics,

23
d;S + 1’%,yu3u7 =0, u'= % (16)
become Ty i
— + KAY— — KCn® Bgu” (17)
(5 ds
where
C = AguP. (18)

At this point it is easy to see that an Evans-Vigier field described by the
metric (??) becomes a ‘force-free field’ with respect to the motion of a
charged test particle having the characteristic parameter ¢/mq, and subject

to the constraint .

moc

K C = constant = 5- (19)
With this constraint, the geodesic equation (4) reduces formally to the
Lorentz equation,

du® q

—_— = nﬂaBﬁ,,uV. (20)

ds moc?

We may identify Bg, given by (?7?) with an electromagnetic field tensor
if the 4-vector potential A, is related to an electromagnetic potential A, by
a gauge transformation of the second kind

Ap= At 2 1)
Since it is possible to demonstrate that constraints such as (6) and (8) are
consistent and in fact do not contradict each other along the trajectory of
the test-particle (see, for instance, [22]), we can assert that we have achieved
a local or a semilocal geometrization (i.e., one along a curve) of the Evans-
Vigier field.

The final conclusion of this section is that any field described by a metric
of the form (??) may act on a test particle with a Lorentz-type force (7).
In such geometrical terms, a Lorentz-type force was known until now only
for a weak gravitational field (see, for instance, [23]).



4 A COMPLETE GEOMETRIZATION OF EVANS-
VIGIER FIELD

Bearing in mind that the metric tensor is given in our account by equations
(??7) and (77?), we need only derive the R,g, R, and also the Einstein’s tensor
from the g, and establish in this way the components of the matter tensor
Tap- If this energy-momentum tensor coincides with one which is known
for a given (physical, phenomenological) material scheme, we say that (?7?)
represents a solution of Einstein’s equations for such a scheme. If we do
not possess such a coincidence, we say that we face an exotic matter which
might determine the desired properties of the spacetime (e.g., ‘traversable
wormhole’ [24] or ‘warp drive’ [25]). From this point of view the general
theory of relativity is not a closed theory, and sometimes the Einstein’s
equations seem to form a mathematical identity if a suitable metric is chosen:

G
Cop = k-2 = kTup. (22)
K

In other words, in this case Kinstein’s equations are used merely for a defi-
nition of an energy-momentum tensor which generates a given gravitational
field.

In the following we will not use this identity aspect of the Einstein’s
equations since we intend to geometrize the Evans-Vigier field A, which
may be counsidered as a gravitational perturbation of a vacuum spacetime.
Then the field equations correspond to an ‘exterior case’ and are given by

Rpy =0 (23)

where Rgy is given by equation (77). In a way, the constant K may be
called a ‘coupling constant’ because it characterizes the strength of the per-
turbation of the vacuum spacetime generated by an Evans-Vigier field. We
assume that the form of the metric (?7) retains its independence from the
value of K. In other words, the metric g given by (?7) remains a solution
for any arbitrary value of K. Thus in the expression (??7) of Rg,, each
coeficient of K and of its powers must be cancelled separately. In this way,
we obtain four equations:

R = 0=-n%[3v,0]aq @)
Ry = 0= K[A%A%By,0]a + (A%A7 + A%A%) (87, 0]]
+n*n ™ [Bo, pl[yer, v] (25)



Ry = 0= —K (y*"A°AY + 1"V A%A*) | 8o, pllya, v] (26)
Ry = 0= +K2A®AFA° AV (8o, yllya, v] 27)

We note that, in accordance with equation (13), the potential A, generates a
new light-like vector ao which, by analogy with the kinematics of a timelike
congruence of curves, may be called an ‘acceleration-potential vector’ and
has the following properties:

CLa - Aa;ﬁ,‘qﬁ = Aa“ﬂ/lﬁ = ——b(:(j,y)AQ(la =
gaﬂag = naﬁag, naﬂaaag = gaﬁa,aaﬂ = 0aqa®3 = aqa® g = anA% g = anA® g = 045
0. (28)

We define also an ‘expansion’, £(«?), of the light-like potential congru-
ence in the form of

E(xP) = —A%, = —A°,. (29)

We notice that equations (12) and (14) are satisfied identically, and that

equation (13) is reduced to the definition of the acceleration potential (15).
Thus the Einstein field equations (11)-(14) become

0% (ApAy) — [(€ +b)Ag) ot (€ +0)4,) L0 (30)

For the stationary case, 0° — —V2, there arise two remarkable type
(2,2) D solutions of equation (17), namely, the Schwarzschild-type solution
(see, for instance, [26], p. 111, Eq. (9.7)),

Sa) = —\}_F (1, £, 4, 2) = [%, V(Z\/?)] (31)and the Kerr-Schild type
metric (see, for instance, [27], p. 146)
. 3 r+ay pytar =z
AKS p 1, = 7 , —> 32
Q p4+0222 ( ? al +p2 G/Q + ,02 p ( )
where
o= 2?4 ¥’ + 22, (33)
1 1 . . 1/2
P S0P =) 1 367 )R e 2 (34)

Here a is a parameter related to the angular velocity and, thus, to the
angular momentum of the source. We remind the reader that the Kerr metric

(2]



represents a vacuum field exterior to a spinning source. Hence, an Evans-
Vigier field and a type (2,2) gravitational field have the same topological
properties. It is important to stress that for the Schwarzschild-type solution
(18)

V x A5 =0 (no magnetic — type field) (35)

and for the Kerr-Schild type metric (19)
VxAK¥ 40 (magnetic — type field). (36)

(The physical interpretation and other formal details of these equations will
be discussed in another paper which is now under study [28].) An immediate
consequence of these results is that rotating bodies generate, besides a spe-
cial kind of gravitational field, also some magnetic-type gauge fields defined
by light-like vector potentials (see sections 1 and 5). For the time being all
experimental tests of general relativity (e.g., Advance of the perihelion of
Mercury, Bending of light, Gravitational red shift etc) are expressed only as
functions of the mass of the central gravitating body. In order to evaluate
the physical implications of the Evans-Vigier field we must evaluate all these
effects in terms of the light-like vector potential 4,. This is not a simple
task because we have to apply Cartesian-type coordinates to spherically or
axially symmetric solutions (see [28]).
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(32)

N2
1 ; &a?) 7 t T ()
VxA¥S=0 \(q\n}ggéetic — type field) (35)

V x A¥S £ 0 (magnetic — type field). (36)

5 PHYSICAL CONTENT OF THE EVANS-VIGIER
CONDITION

5.1 Four Independent Electromagnetic Invariants

In Classical Electrodynamics there exist only four independent electromag-
netic (EM) field invariants [29], {30], namely (in units with ¢ = 1),

Ip = AgA®, (37)
1
2 Ctﬁ ’

where F,g is the EM field tensor, FoB is the dual EM field tensor and T/
is the Maxwell stress-energy tensor. Salingaros [30] used these invariants to



announce the proposition: plane monochromatic EM (transverse) waves are
characterized by vanishing invariants Iy — I — Is = 0 in the Lorentz gauge.
As we mentioned, Evans-Vigier field is defined by a vanishing invariant Iy =

0.

5.2 Isthe Evans-Vigier Condition a Lorentz-Covariant Gauge
Condition or a Constraint Defining an Exotic Electro-
magnetic Field?

In this section we consider the question if A,4% = 0 can be proposed as
a particular (nonlinear) Lorentz-covariant gauge condition for Abelian or
non-Abelian gauge theories. We mention that a similar nonlinear condition
in which however

AaA% = constant # 0 (41)

was proposed by Dirac [31]. This is equivalent to a proportionality between
A% and the particle four-velocity «® [32], [33].

Generally, there are two constraints which arise in connection with any
gauge condition: attainability and completeness (or uniqueness) [34]. At-
tainability means that given an arbitrary 4-vector potential B, not satisfying
the Evans-Vigier condition, one can find a gauge transformation U such that
the gauge-transformed B,,

Ba % BY, = U~ 'BU —~ éU*laaU, (42)

satisfies the gauge condition. Imposing the condition (3) on BY,, we find a
nonlinear differential equation for U

BY20,U = —iB,UBY® (43)
where )
Ble — y-lpay - éU*lnaﬁagU. (44)

Concerning the problem of uniqueness we assume that there exists a poten-
tial B, satisfying equation (3) and also a gauge transformed BY, of that
potential which also satisfies the Evans-Vigier condition, i.e.

BoB* = BY,BY* = 0. (45)

Applying equation (42) to egs. (43) and (45), we obtain nonlinear differential
equations for U which for a simply connected spacetime and for regular



vector potentials can, in principle, be solved. Thus, the uniqueness is not
fulfilled and the Evans-Vigier condition (3) is rather a constraint defining an
exotic electromagnetic-type field than a Lorentz-covariant gange condition.

5.3 Evans-Vigier Field and Non-Abelian Fields

It is well known that actually we cannot speak about a non-Abelian SU(2)
electrodynamics but merely about a non-Abelian (nonlinear) analogue of
Maxwell's equations or abont a non-Abelian analoguie of electric and mag-
netic fields which do not appertain to what we ordinarily associate with
electromagnetism. In contrast to electrodynamics, the Lagrangian of the
Yang-Mills field in vacunm contains, in addition to the second-order terms
in such fields, higher-order terms. Thus, Yang-Mills fields possess a nontriv-
ial self-interaction as in the case of a gravitational field. In other words, the
mediating particles of the Yang-Mills field themselves possess charges.

On the other hand, these three classical theories, Maxwellian electro-
dynamics, Einsteinian general relativity, and Yang-Mills theory possess a
common feature they all admit a Birkhofl theorem (35]. In a restricted
sense, this means that if we consider [in each of these theories, 7.e. even for
SU(2) and SU(3) simmetries)] the gauge field of a single point particle, for
large r, it proves similar to the Coulomb type field.

For example, the non-Abelian SU(2) analogue of the electromagnetic
field strength tensor is the curvature tensor of the SU(2) internal bundle,

FN& = —i[Dq, Dgl = 8,45 — 834 +iG[Aq, Ag). (46)
where the matrices A, are defined by
An(zP) = A%(P) T = A,- T (47)

and T? are the isospin matrices appropriate to the particular multiplet of
wavefunctions on which the gauge-covariant derivative

Do = 8a + ida (=) (48)

acts. The matrix form of equation (46) depends on the particular repre-
sentation of the gauge group SU(2) to which the matrices T® appertain.

However, in every representation, these matrices satisfy the commutation
relations of the Lie algebra

(T¢, T = ie%eTe. (49)



In an isospin space, T and A, are 3-dimensional vectors (a, b, ¢=1, 2, 3).
Then

FNP = (0aAp— 0gAn — GA, X Ag) - T. (50)

If we want to describe the interaction between the gauge fields and n

species of spin-+ particles (fermions) with masses m;, we can use the total
action

gNA /d4 [ Fa, aaﬂ+2¢,l(5 (1(9 PA(I mi)%(u’vu) ) (51)

i=1

where the ‘bar’ notation means the ‘contraction’” with (Dirac) v# matrices,
e., for instance

A= AFALTO = kAT (52)

and where T ()% is the ath generator matrix in the isospin-T' () representation.
The sum is over multiplets of wavefunctions v;, each having (27 O 1) entries
in the case of a SU(2) isospin, and each member being itself a Dirac spinor.

The variation of the action (51) with respect to A, yields Euler-Lagrange
equations for the gauge fields Ag(xﬂ ) which are the Yang-Mills equations
i.e. the non-Abelian analogue of Maxwell’s equations:

D, FNAeB B (53)
or
D F 2P — G Ab peaf — jab (54)
where the current is given by
I = g3 91O, (55)
i

For free fields, written in terms of the vector potential in the Lorentz gauge,

0da 0, (56)
Ox™
the Yang-Mills equations become
DA, + GAP x (3sA4 — 80Ag — GAy x Ag) = 0. (57)

In order to compare this with the geometrized Evans-Vigier potentials
(31) and (32), we remind the reader that the spherically symmetric solutions
of the source-free Yang-Mills equations for a single point particle do not differ



fundamentally from the Coulomb field [36], [37]. Indeed, the solution has
the form

T
Ag=ip(r) Ag= ka (58)

which even for a canonical case cannot apparently satisfy the Evans-Vigier
condition. We cannot apparently also identify an Evans-Vigier field in the set
of monopoles and instantons, that is within solutions corresponding to Yang-
Mills equations for SO(4) and SO(3,1) gauge groups. The word ‘apparently’
is used here because solutions of the form (58) are very particular, and it
is possible that Yang-Mills fields with other symmetries admit Evans-Vigier
type exotic potentials as exact solutions which, when they are geometrized
in spacetime, may be of the form (31) or (32).

5.4 Rotation and Evans-Vigier Field

Following onur preceding account, we may now state that a geometrized
Evans-Vigier field represents a classical but exotic electromagnetic-type field
which possesses similar properties to gravitational fields defined by Schwarzschild
and Kerr metrics. The process of geometrizing such an Evans-Vigier field,
throngh association of the vector potential with part of the structure of
spacetime, leads to the supposition that, possibly, there exists a funda-
mental relation between rotation and a magnetic-type field. 1 should be
emphasized that in a sense our results demonstrate a generalisation of and
the reciprocity to a well known physical phenomenon. Thus, considering a
free particle in an external electromagnetic field defined by the tensor Fig,
we observe the generation of a vorticity,

Waf = Uaf — UBa (59)

which is related to the field tensor F,3 via the (London) equation of super-
conductivity [38], [39]:

0Ag 0Aa mc

oz 9xP e o (60)

Fap =

In a geometrized field, free noninteracting test particles placed in an external
gravitational field define a gravitational superconducting state because they
move on (force-free) geodesics meeting no ‘resistance’ [40], [41].

Equation (60) expresses that the four-vector potential A, is tangent to
the particle trajectories at all points [42] and thus the particle velocity is
proportional to the vector potential as we have seen above. It is important to



stress that it is the external vectorial field A, which determines the motion
of a test particle and not vice versa. Moreover, generally, the four-velocity
1us may be defined as the vector-potential of an inertial-gravitational field
and may be assigned to each point of the spacetime independently of the
fact whether or not a test particle resides at that point (43]-[45]. Hence, if
the vacunm spacetime is perturbed by the presence of the vectorial field A
we can assert that the sonrce of vorticity is precisely this field.

Our generalisation arises from the fact that not only does a normalized
(Dirac) vector potential field [see eq. (41)] generate a vorticity field, but
yields also a relation hetween the angular momentum of a rotating body and
a geometrized light-like vector potential. This result is clearly illustrated by
equations (32) and (36). It is not possible to write a simple relation similar
to equation (60) because, in the present case, A, is light-like and u is time-
like and the relation between these quantities is more complicated than in
(60) (see [28]).

However, it is not nnreasonable to search for a relation between a vector
potential A, and the ‘vorticity’ of the wavevector of a nnll-free electromag-
netic field (an incoherent fluid of photons) for which we quote the relations

[46]:

E2_B? — (61)
E-B = 0, (62)
Temag = Eafp, (stress — energy tensor) (63)

£al® = 0, (64)
{a;gﬁﬁ = 0 (null geodesics). (65)

If A, is proportional to the null wavevector &, which now plays the role of
a four-velocity vector, the existence of an Evans-Vigier magnetic-type field
follows in a natural way: An ‘azial’ magnetic-type field BO) is generated
by the vorticity of the null wavevector which defines a null (i.e., transverse)
electromagnetic field. Characterizing the null eleciromagnetic field by its
wavevector &,(z”), we can write

i 8A 8A ( g
PV o B o 2 Al 0
Coof Dx® AP constant x (6:1:0‘ 83:»3) ' (66)

On the other hand, let us consider as a simple example, a circularly
polarized plane wave with a 3-vector potential

A= (k£ 9)Lexp (iwt— '“’—Z> (67)
w

C



where the £ signes correspond, respectively, to the complex vector potentials
A® and A® which define the circularly polarized wave. Of course, we
note that B = ¥ x A and B@) = v x A(2) represent two transverse
magnetic fields of the electromagnetic wave. The Evans-Vigier hypothesis
that vectorials fields of the form B™®) x B(2) or A x A [the latter
being inspired by the Yang-Mills relation (50)] could be associated with real
electromagnetic fields mnst be verified by experiment.

Another idea proposed as a hypothesis by Fvans and Vigier is that the
fields B(1), B3 and BAB® x B are related by the angular commutator
theory. In fact, we recognize a similar idea in a recent paper [47] where it
is shown that magnetic fields might be related to spatial rotations. Fur-
thermore, we observe that the number of the non-null components of an
electromagnetic field is dictated hy the particular form of the six generators
of the Lorentz group.

We finally remark that a possible reciprocal magneto-rotation-induction
effect: ‘rotating (even neutral) particles generate a magnetic-type field’ (see
section 1) is supported also by an analogy between charge and spin in general
relativity (see, for example, [48]) and thus, from a geometrical point of
view, both charges and angular momenta are sources of electromagnetic-

type fields.

6 DISCUSSION

In this section we detail some ideas related to the possibility that a photon
becomes massive or acquires a mass by its interaction with other fields.
Because our understanding of the Evans-Vigier field is still incomplete, we
expect in this way to demonstrate the similarities and differences hetween
the Proca field and the Fvans-Vigier field.

6.1 Classical Proca Massive Photons

In the case of the classical electrodynamics of massive spin one particles in
a flat (Minkowski) spacetime, the Proca Lagrangian density (in the absence
of charges and currents) is

1 2
Lproca = — o= FapF®® 4 ——A,A° 68
Pro 167 af + 87 o ( )

where
Mphc

(69)

i
A
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is the inverse Compton wavelength of the photon. We assert that even if
AnA® were zero we can still formally use the Lagrangian density (68) but
have to substitute ultimately in the equations of motion 4,A4% = 0 if such
an expression were possibly involved.

The Enler-Lagrange equations of motion with respect to A4, are precisely
the Proca equations

OgFP™ 4 y2A™ =2 A™ — (05A5> + p?A% =0 (70)

which describe the wave aspect of massive photons. If we apply the diver-
gence (9,) to these equations, we find

8 A% =0 (71)

for p # 0. We see that the Lorentz condition is now a necessary condition
and not a choice of gange.

On the basis of a minimal coupling procedure (nog — gap, and (‘9[;F5a —
Fﬂa;g), we observe that the Proca equations in a curved spacetime, assuming
that the electromagnetic field is weak and does not perturb the background
metric, are given by

Fﬁa;ﬁ + p2A% = 0. (72)

The Proca equations arise here as the only possible linear generalization of
the Maxwell equations [49]. As a result of the presence of the coupling con-
stant u (the mass of the photon), the potentials become directly measurable
(observable) quantities.

For the static case, the Proca equations in vacuo reduce to

V24% = p?Ae. (73)

For example, the electrostatic scalar potential of a point charge placed at
the origin (Proca-Yukawa potential) becomes

const

¢(r) =

exp(—ur). (74)

r

Thus, we observe that the assumption of a non-vanishing mass for photons
leads to a deviation from the Coulomb law. Another consequence is that a
free electromagnetic wave with massive photons,

A® = P*(p)exp|—i(wt —k-T)] = P%p)exp (- ipaw“)

= P*p)exp(—ikaz"), (75)

11




possesses a dispersion relation in a vacuum,

w? == (kQ + ;1,2)02 (76)
as well as a group velocity
d
s CaR A R (77)

where P%(p) = (P? P) is the polarization vector of the photon, p* = (p°, p)
is the 4-momentum of the photon, and k = (k% k) is the wave vector. To
each component of the quantized four vector potential, there corresponds a
special type of a photon. In conjunction with the Lorentz condition (71) we
obtain

paP% = 0. (78)

Since there exists no gauge invariance, the massive photon possesses three
degrees of polarization (freedom), corresponding to helicities (spin projec-
tions along the direction of propagation) ¢ = +1 and 0. For instance, a

massive photon with momentum p along the z axis displays the polariza-
tions: ’

IH

1 . o
$75 (éz £1iéy) (circular polarizations: Rand L) (79)

pEO = %(m, 0, 0, %) (80)

These polarizations satisfy the relation of completeness [50]

(e) Palp
ZPng)*P[J = Napg t— (81)
c H
which snggests a possible link with the projection tensor in an infinitesimal

3-space orthogonal to p,. Since

E?
5 pZ = mﬁhc2 40 (“mass — shell” condition) (82)

C

we observe that the Proca longitudinal polarization (80) does not satisfy
the Evans-Vigier hypothesis A, A% = 0. The Maxwell-Proca stress-tensor

12



corresponding to the Lagrangian density (68) is
T}://I}axwell T T(i’éoca

i L _]_77 BF 5}/"76 — F‘ ".YIIVB’Y
4 \4 "7 @

oo .
aB

p? (1
o (577&3/17/17 — AaAg) (83)

and this expression can be consistent with an Evans-Vigier field only if we
assume the condition A,A% = 0 here but do not extend this to the original
Lagrangian (68).

We conclude this snbsection with a discussion on some properties of
Maxwell, Proca and, possibly, also of the Evans-Vigier field.

1. The electromagnetic field entries are composed of two parts: the trans-
verse part for which energy and momentum form a four vector and
behave like the energy and momentum of free particles as far as their
transformation properties are concerned, and the longitudinal part for
which this does not apply. In conventional gnantnm electrodynamics,
only the first (transverse) part is subject to a quantification, giving
rise to a photon. The second part remains usually unquantified. The
latter part gives rise, in the presence of matter, to the Coulomb in-
teraction between charged bodies in classical electrodynamics (lines
of force obeying Gauss’ law) and the quantum electrodynamic effects
(exchange messenger, virtual praticles).

2. The longitudinal photon does not transport energy and cannot be
observed as a free particle. Thus, for instance, there does not exist any
gravitational interaction between a longitudinal photon and a massive
object, and this is why a Coulomb field can cross the event horizon of a
black hole. At this point we can offer a non-local interpretation to this
phenomenon. Indeed, the longitudinal photons do not travel in space
as do ordinary transverse photons at a finite speed ¢. They simply
happen as instantaneous (i.e., non-local) extended events in which
the longitudinal quanta (or ‘connections’ [52]) are spatially and non-
temporally distributed and connected reproductions as it happens in
an ordinary still photograph. Such a longitudinal photon may possibly
be associated with an Fvans-Vigier B®) ficld. Tt is evident that we
can define in a similar way a longitudinal graviton corresponding to a

gravitomaguetic ng) field.
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X 5 X
— (A4 A7) 5 g + (A4A7), 0] (86)
Contracting (86) with ¢*’ we find
R = —3x(4,A7)4". (87)

Now, the Euler-Lagrange equations deduced from (85) by a variation of A4,
are

Fef gy Xpax— (88)
%
or

2
P

RA%(A,A") % =0, (89)

K
We stress that these are the equations of an electromagnetic field interacting
with its proper gravitational field. Comparing also with equations (72) we
establish a relation for the mass of the photon,
’ 2
p?eXr =32 (a,4m) 0. (90)
K K ’

Thus, we may conclude that a photon acgnires a mass as a result of its
nonlinear interaction with its proper gravitational and (or) electromagnetic
field. The mass of the photon is directly proportional to the magnitude of
the vector potential A, and (or) to the curvature scalar of spacetime.

We finally remark that in the present case the Proca massive field does
not coincide with the Evans-Vigier field.
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As regards the estimates of the (rest) mass of a photon we quote the upper
limit which is extracted from “Galactic Electrodynamics” [53]

m‘pthiSS g- (84)

It is very difficult to hope that the effects of such a minute mass may be
detected in a laboratory.

We remind the reader that the condition p # 0 is not consistent with
gauge invariance, and for this reason Proca’s electrodynamics appears aes-
thetically defective to many theoretical physicists. However, the only certain
assertions on the value of . which can be made must be based on experi-
ments [54], and observations we might add. Furthermore, it is important to
stress that Hora [55], studying the motion of electrons in a laser field, noted
the presence of an unexpected longitudinal component. At this point we
mention that in an infinite plane wave, the E and B fields are everywhere
perpendicilar to the wave vector and the energy flow is everywhere parallel
to the wave vector. However, in a wave of finite transverse extent (e.g. a
cirenlarly polarized wave propagating in the 2 direction, as, for instance, in
the laser beam contained within an optical fiber with a radins of abont a
micron) the E and B fields have a (longitudinal) component parallel to the
wave vector (the field lines are closed loops). This is a well known classical
result (see, for instance, [56]).

6.2 Interacting Electromagnetic and Gravitational Fields

We consider a free electromagnetic field, in a vacunm spacetime, which cre-
ates its proper gravitational field g,5. Such an interacting system incorpo-
rating a gravitational field (go3) and an electromagnetic field (4,) may be
specified by the Lagrangian density [57]:

1 1 1 P
I = _Eﬂ—r,/—gFa{;F"B + ;\/——ggha’eRag + x;v—gA'yAvga'BRaB (85)

where x is the coupling constaut. If we require that the action emanat-
ing from this Lagrangian is to be stationary with respect to variations in
gap(7), one obtains the Euler-Lagrange equations. These are, in fact, the
Finstein’s equations for the nonlinear interaction between electromagnetic
and gravitational fields. Thus we find

Gap = —rTap

= —n[ﬂilﬁamcal + &AWA’YGQB + XRAQAB
K K
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