DEMOSTRACION DEFINITIVA 4: LA IDENTIDAD DE CARTAN BIANCHI

La identidad de Cartan Bianchi fue introducida por primera vez por Cartan alrededor de 1925, y ha sido desde entonces una característica tradicional de la geometría de Cartan. Se trata de una identidad rigurosamente correcta, basada en las definiciones de los tensores de curvatura y torsión ya introducidos en la Demostración Definitiva 2. Como siempre en la geometría de Cartan, se respalda en el postulado de la tétrada sin pérdida de generalidad. Relaciona la torsión y la curvatura, y constituye la base de las ecuaciones de campo homogéneas, tanto de la dinámica como de la electrodinámica, en la teoría ECE.

Demostración.

Utilizando notación habitual en forma diferencial (véase Carroll, Cap. 3), la identidad es:

$$d \wedge T^a + \omega_h^a \wedge T^b := R_h^a \wedge q^b \tag{1}$$

que se traduce a notación tensorial de la siguiente manera:

$$\partial_{\mu}T^{a}_{\nu\rho} + \partial_{\rho}T^{a}_{\mu\nu} + \partial_{\nu}T^{a}_{\rho\mu} + \omega^{a}_{\mu b} T^{b}_{\nu\rho} + \omega^{a}_{\rho b} T^{b}_{\nu\rho} + \omega^{a}_{\mu b} T^{b}_{\mu\nu} :=$$

$$\left(R^{\lambda}_{\mu\nu\rho} + R^{\lambda}_{\rho\mu\nu} + R^{\lambda}_{\nu\rho\mu} \right) q^{a}_{\lambda}$$

$$(2)$$

donde:

$$T_{\nu\rho}^{a} = \left(\Gamma_{\nu\rho}^{\lambda} - \Gamma_{\rho\nu}^{\lambda} \right) q_{\lambda}^{a} \tag{3}$$

y así sucesivamente para los demás. Utilizando el Teorema de Leibniz:

$$\partial_{\mu} T^{a}_{\nu\rho} = (\partial_{\mu} \Gamma^{\lambda}_{\nu\rho} - \partial_{\mu} \Gamma^{\lambda}_{\rho\nu}) q^{a}_{\lambda} + (\Gamma^{\lambda}_{\nu\rho} - \Gamma^{\lambda}_{\rho\nu}) \partial_{\mu} q^{a}_{\lambda}$$

$$\tag{4}$$

y así sucesivamente para los demás. Por lo tanto, la ecuación (2) deviene:

$$(\partial_{\mu}\Gamma^{\lambda}_{\nu\rho} - \partial_{\mu}\Gamma^{\lambda}_{\rho\nu}) q^{a}_{\lambda} + (\Gamma^{\lambda}_{\nu\rho} - \Gamma^{\lambda}_{\rho\nu}) (\partial_{\mu}q^{a}_{\lambda} + \omega^{a}_{\mu b}q^{b}_{\lambda}) + \dots =$$

$$(R^{\lambda}_{\mu\nu\rho} + R^{\lambda}_{\rho\mu\nu} + R^{\lambda}_{\nu\rho\mu}) q^{a}_{\lambda}$$
 (5)

Ahora cambiamos el rótulo de los índices de sumatoria (índices ficticios) según:

$$\lambda \to \sigma$$
 (6)

para obtener:

$$(\partial_{\mu}\Gamma^{\lambda}_{\nu\rho} - \partial_{\mu}\Gamma^{\lambda}_{\rho\nu}) q^{a}_{\lambda} + (\Gamma^{\sigma}_{\nu\rho} - \Gamma^{\sigma}_{\rho\nu}) (\partial_{\mu}q^{a}_{\sigma} + \omega^{a}_{\mu b}q^{b}_{\sigma}) + \dots :=$$

$$(R^{\lambda}_{\mu\nu\rho} + R^{\lambda}_{\rho\mu\nu} + R^{\lambda}_{\nu\rho\mu}) q^{a}_{\lambda}$$

$$(7)$$

Utilizamos el postulado de la tétrada para obtener:

$$\partial_{\mu}\Gamma^{\lambda}_{\nu\rho} - \partial_{\mu}\Gamma^{\lambda}_{\rho\nu} + \Gamma^{\lambda}_{\mu\sigma} \left(\Gamma^{\sigma}_{\nu\rho} - \Gamma^{\sigma}_{\rho\nu}\right) + \\
\partial_{\rho}\Gamma^{\lambda}_{\mu\nu} - \partial_{\rho}\Gamma^{\lambda}_{\nu\mu} + \Gamma^{\lambda}_{\rho\sigma} \left(\Gamma^{\sigma}_{\mu\nu} - \Gamma^{\sigma}_{\nu\mu}\right) + \\
\partial_{\nu}\Gamma^{\lambda}_{\rho\mu} - \partial_{\nu}\Gamma^{\lambda}_{\mu\rho} + \Gamma^{\lambda}_{\nu\sigma} \left(\Gamma^{\sigma}_{\rho\mu} - \Gamma^{\sigma}_{\mu\rho}\right) := R^{\lambda}_{\mu\nu\rho} + R^{\lambda}_{\rho\mu\nu} + R^{\lambda}_{\nu\rho\mu}$$
(8)

y reordenando:

$$R_{\rho\mu\nu}^{\lambda} + R_{\mu\nu\rho}^{\lambda} + R_{\nu\rho\mu}^{\lambda} :=$$

$$\partial_{\mu}\Gamma_{\nu\rho}^{\lambda} - \partial_{\mu}\Gamma_{\mu\rho}^{\lambda} + \Gamma_{\mu\sigma}^{\lambda} \Gamma_{\nu\rho}^{\sigma} - \Gamma_{\mu\sigma}^{\lambda} \Gamma_{\mu\rho}^{\sigma} +$$

$$\partial_{\nu}\Gamma_{\rho\mu}^{\lambda} - \partial_{\rho}\Gamma_{\nu\mu}^{\lambda} + \Gamma_{\nu\sigma}^{\lambda} \Gamma_{\rho\mu}^{\sigma} - \Gamma_{\rho\sigma}^{\lambda} \Gamma_{\nu\mu}^{\sigma} +$$

$$\partial_{\rho}\Gamma_{\mu\nu}^{\lambda} - \partial_{\mu}\Gamma_{\rho\nu}^{\lambda} + \Gamma_{\rho\sigma}^{\lambda} \Gamma_{\mu\nu}^{\sigma} - \Gamma_{\mu\sigma}^{\lambda} \Gamma_{\rho\nu}^{\sigma}$$
(9)

Esto constituye una identidad exacta debido a que los tensores de curvatura del lado izquierdo del signo de igualdad vienen definidos como:

$$R_{\rho\mu\nu}^{\lambda} = \partial_{\nu}\Gamma_{\rho\mu}^{\lambda} - \partial_{\rho}\Gamma_{\nu\mu}^{\lambda} + \Gamma_{\nu\sigma}^{\lambda}\Gamma_{\rho\mu}^{\sigma} - \Gamma_{\rho\sigma}^{\lambda}\Gamma_{\nu\mu}^{\sigma}$$

$$R_{\mu\nu\rho}^{\lambda} = \partial_{\rho}\Gamma_{\mu\nu}^{\lambda} - \partial_{\mu}\Gamma_{\rho\nu}^{\lambda} + \Gamma_{\rho\sigma}^{\lambda}\Gamma_{\mu\nu}^{\sigma} - \Gamma_{\mu\sigma}^{\lambda}\Gamma_{\rho\nu}^{\sigma}$$

$$R_{\nu\rho\mu}^{\lambda} = \partial_{\mu}\Gamma_{\nu\rho}^{\lambda} - \partial_{\mu}\Gamma_{\mu\rho}^{\lambda} + \Gamma_{\mu\sigma}^{\lambda}\Gamma_{\nu\rho}^{\sigma} - \Gamma_{\mu\sigma}^{\lambda}\Gamma_{\mu\rho}^{\sigma}$$

$$(10)$$

que era lo que se pretendía demostrar.