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Gravitational Poynting theorem: interaction 
of gravitation and electromagnetism 
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The geometrical basis of ECE theory is used to deduce the existence of a 
gravitational equivalent of the Poynting Theorem and four gravitational fields: 
g, d, h and b. These are the equivalents of E, D, H and B in electromagnetism, 
the field equations of gravitation having the same structure as those of 
electromagnetism, two homogeneous and two inhomogeneous. The interaction of 
gravitation and electromagnetism is developed on the principle that all forms of 
energy are interconvertible, so the mechanism of conversion of electromagnetic 
to gravitational energy is elucidated via the respective Poynting Theorems.

Keywords: ECE theory, gravitational Poynting Theorem, gravitational fields, interconversion of electromagnetic 
and gravitational energy.

1.	 Introduction.

The geometrical structure of Einstein–Cartan–Evans (ECE) theory [1–10] shows 
that the field equations of gravitation have a richer structure than thought 
hitherto, and that that structure is the same as for electromagnetism. In this 
paper the gravitational field equations are developed further and in parallel with 
electromagnetism. There are two homogeneous equations of electromagnetism, 
with the fields E and B, respectively the electric field strength and magnetic 
flux density. So it is shown in Section 2 that there are two homogeneous field 
equations of gravitation with the same structure and describing the interaction of 
the acceleration due to gravity g and the gravitomagnetic flux density b. There 
are two inhomogeneous field equations of electromagnetism, with the electric 
displacement D and magnetic field strength H, and in Section 2 it is shown 
that there are two inhomogeneous field equations of gravitation, involving the 
gravitational displacement d, and the field strength of magnetogravitation h. In 
Section 2 the units of these fields are defined and also the way in which they 
interact with the mass density ρm and current of mass density Jm. The tensor 
structure of the equations is defined by the Cartan geometry [11] of ECE theory.
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In Section 3 the gravitational Poynting Theorem is developed in parallel with 
the well known Poynting Theorem of electromagnetism, the law of conservation 
of energy. In ECE theory both laws of conservation of energy are derived from 
geometry within the context of general relativity and again, both have the same 
structure, defined in this Section. Since all forms of energy are interconvertible, 
the structure of the gravitational Poynting theorem may be used to investigate 
the way in which electromagnetism affects gravitation. This investigation may 
lead towards a practical counter gravitational device in which the electromagnetic 
field decreases g, the acceleration due to gravity.

2.	 The field equations of gravitation and magnetogravitation

As shown in the preceding paper, UFT 167 of this series [1–10] the geometrical 
structure of the homogeneous field equation is:

 = .a v av
HT jµ

µ∂ 

	 (1)

Here a vT µ
  is the Hodge dual of the torsion tensor, a vR µ

µ
  the Hodge dual 

of the curvature tensor, and a
bµΩ  the relevant spin connection. In general the 

homogeneous four current

 =0,
a vav a a v

H bj R T
µ µ

µ µ= −Ω 

	
(2)

is non-zero, but from experimental results in electromagnetism, it is assumed to 
be zero. The basic geometrical structure of the inhomogeneous field equation is:

 
a va v av a b v

I bT j R T
µµ µ

µ µ µ∂ = = −ω 	
(3)

in which the current av
Ij  originates in mass density and the current of mass 

density. In ECE theory the basic geometrical structures (1) and (2) are the same 
for gravitation and electromagnetism.

The geometrical structure (3) gives the inhomogeneous field equation of 
gravitation in tensor format. For each sense of polarization a the field equation is:

.v v
MK Jµ

µ∂ = 	  (4)

The field tensor is defined as:

1v vK g g T
k

µ µρ σ
ρσ=

	
(5)

where k is the Einstein constant:
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8 =  = 1.86595 10  m kgGk
c

− −π
×

	  
(6)

where G is the Newton constant, and where the inverse metrics have been 
used to raise indices as usual. Note that these are the inverse metrics of a four 
dimensional spacetime with both torsion and curvature [1-11]. The field tensor 
is a 4 × 4 matrix defined as follows:

X Y Z

X Z Y

Y Z X

Z Y X

0 d d d
d 0 h /c h /c
d h /c 0 h /c
d h /c h /c 0

vK µ

− − − 
 − −= 
 −
 
  	

 (7)

so the tensor equation (4) becomes two vector equations:

,m=⋅ ρ∇ d 	  (8)

.m=
t

∂
× −

∂
J∇

dh
	

 (9)

Equation (8) is the direct analogy of the Coulomb law in electromagnetism, 
and Eq. (9) the direct analogy of the Ampere–Maxwell law. In direct analogy 
with electromagnetism the gravitational displacement is defined by:

1
8

= g
Gπ

d
	

 (10)

where g is the acceleration due to gravity. The units of d are kg m2 in direct 
analogy with the units of electric displacement D in electromagnetism (C m2). 
The analogue of Eq. (10) in electromagnetism is:

0 ,= D E 	  (11)

where E is the electric field strength (V m–1), the analogue of g in gravitation, 
and where 0 is the vacuum permittivity. Here ρm is the mass density in units of 
kg m–3 , in direct analogy with the charge density in units of C m–3. The current 
of mass density Jm has units of C ρm or kg s–1 m–2 in analogy with the electric 
current density J with units of C s–1 m–2. The gravitomagnetic field strength h 
has units of kg m–1 s1 in analogy with magnetic field strength H in units of C 
s–1m–1 or A m–1.

The homogeneous field tensor is defined within the factor c as the torsion of 
spacetime:
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X Y Z

X Z Y

Y Z X

Z Y X

0 / c / c / c
/ c 0 b b
/ c b 0 -b
/ c b b 0

v v

g g g
gg cT
g
g

µ µ

 
 − −= = 
 −
 
− −  	

(12)

The metric of the homogeneous field equation is defined as:

( ) ( )metric diag 1, 1, 1, 1vgµ = − − − 	  (13)

so that the homogeneous field equation is:

0vgµ
µ∂ =

	
(14)

where:

X Y Z

X Z Y

Y Z X

Z Y X

0 -b -b -b
b 0 / c / c
b / c 0 / c
b / c /c 0

v g gg
g g

g g

µ

 
 −= 
 −
 

− 



	

 (15)

Equation (14) may be developed in terms of two vector equations:

0,⋅ =∇ b 	  (16) 

and

.g
t

∂
× − =

∂
0∇

b
	

 (17)

in which the units of the gravitomagnetic flux density b are s–1 and in which g 
is the acceleration due to gravity in m s–2. Equation (16) is the direct analogue 
of the Gauss law of magnetism:

0⋅ =∇ B 	  (18)

and Eq. (17) is the direct analogue of the Faraday law of induction:



Gravitational Poynting theorem 437

.
t

∂
× + =

∂
0∇

BE
	

(19)

The metric (13) is defined in terms of the conjugate product of tetrads [1–10]: 

( )metric = a b
v v abg q qµ µ +η

	 (20)

and should not be confused with the Minkowski metric of flat spacetime in which 
there is no torsion. It is based on experimental data. The two equations (18) and 
(19) of electromagnetism are thought to be well verified experimentally, i.e. there 
is no magnetic monopole or magnetic current. In analogy it is assumed that there 
is no magneto-gravitational monopole or current. Note carefully that in general 
the metrics of the homogeneous and inhomogeneous structures are different. As 
shown in UFT 167 the inhomogeneous metric elements in electromagnetism define 
the permittivity and permeability of a given material. The analogous concept is 
present in the inhomogeneous structure of gravitation.

In summary of this section, the ECE field equations of gravitation are, for 
each index of polarization:

0,

,

,

.
m

m

t

t

⋅ = 
∂

− = ∂ ⋅ = ρ ∂ × − =
∂ 

0

J

∇

∇ +

∇

∇

b
bg

d
dh

	

(21)

The ECE field equations of electromagnetism, in direct analogy, are, for each 
index :

0,

,

,

.

t

t

⋅ = 
∂

− = ∂ ⋅ = ρ ∂ × − =
∂ 

0

J

∇

∇ +

∇

∇

B
BE

D
DH

	

(22)

3.	 Gravitational and electromagnetic Poynting theorems

The gravitational Poynting Theorem is deduced in direct analogy with the 
well known electromagnetic Poynting Theorem [12] - the law of conservation 
of energy. Therefore the usual Poynting Theorem is reviewed first as follows. 
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The theory of this section is developed with the understanding that it is valid 
for each polarization index a, both for electromagnetism and gravitation. The 
electromagnetic energy density in units of joules per cubic metre is:

( )1U = +
2

⋅ ⋅E D B H
	

(23)

and the total rate of doing work by the electromagnetic field in a volume V is:

3 =  VP d x∫ ⋅J E 	  (24)

in joules per second, the units of power. This power is the conversion of 
electromagnetic energy to other forms of energy, notably gravitational energy. 
The Poynting theorem is

 = 
t

∂ ⋅ × − ⋅ ∂ 
∇

DJ E H E
	  

(25)

where Eq. (22.d) has been used to eliminate J. Using Eq. (19) the theorem can 
be expressed as: 

U
t

∂
+ ⋅ − ⋅

∂
∇ S = J E

	
 (26)

where the Poynting vector is defined as:

: .×S = E H 	  (27)

Similarly, the total rate of doing work by the gravitational field in a volume 
V is:

3
grav  =   V mP d x∫ ⋅J g 	  (28)

where Jm is the mass current density. The gravitational energy density is:

( )grav
1
2

U = ⋅ + ⋅g d b h
	

(29)

which has the correct units of kg m-1s-2, or kg m2s-2m-3, or Jm-3. The gravitational 
Poynting theorem is therefore:
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grav
grav m

U
t

∂
+ ⋅ = − ⋅

∂
∇ S J g

	
(30)

where the gravitational Poynting vector is:

.grav = ×S g h 	 (31)

When considering the interaction of electromagnetism and gravitation J. E is 
the work done per unit time per unit volume by the electromagnetic field on the 
gravitational field, and jm . g is the work done per unit time per unit volume 
by the gravitational field on the electromagnetic field.

For practical applications we wish to consider the effect of an electromagnetic 
device on gravitation, notably on g. The overall aim is to make g smaller in 
magnitude and to counter gravitation. In the presence of electromagnetism the 
gravitational Poynting theorem becomes:

.mt
∂ ⋅ × − = ⋅ + ⋅ ∂ 

∇
dg h g J E J

	
(32) 

For simplicity, consider situations where:

× = 0∇ h 	  (33) 

then:

mt
∂

− ⋅ = ⋅ + ⋅
∂
dg g J E J

	
(34) 

where:

2

1
c k

=d g
	

 (35)

( )2
mc k

t
∂
⋅ = − ⋅ + ⋅
∂
gg g J E J

	
 (36)

If the mass is a fixed mass such as that of the Earth (the object responsible 
for g), then:
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Jm = 0 	 (37)

so:

2c k
t

∂
⋅ = − ⋅
∂
gg E J

	
(38)

where the Einstein constant is: 

2

8 .Gk
c
π

=
	  

(39)

In the Z axis:

10
2

1.71 10   Z
Z Z

Z
Z Z

g c k E J
g

J
t

E− ∂
= − = − ∂  

×
	

 (40)

so gz changes with time in the opposite direction to Ez and Jz. The effect is very 
small, but could be amplified by a resonance mechanism, which could be found 
within the structure of the Poynting theorem itself.
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