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Abstract. 
 
                     The force equation of quantum mechanics is deduced using the fact that the 
canonical variables q and p of Hamilton´s classical equations are independent. This enables 
the straightforward calculation of forces for the first time in quantum mechanics using the 
Schroedinger wavefunctions. Some examples of force eigenvalues are given for exact 
solutions of Schroedinger´s equation, a pure energy equation derived from the classical 
hamiltonian. This new method of calculating forces has essentially unlimited utility 
throughout quantum science.  
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1. Introduction. 
 
                    During the course of development of ECE unified field theory in 177 papers to 
date [1-10] the Schroedinger equation of quantum mechanics has been derived from Cartan 
geometry within the context of a unified field theory. The logical framework provided by 
ECE theory allowed the deduction of the quantum Hamilton equations in UFT 176 
(www.aias.us).  
 
In Section 2 a new force equation of quantum mechanics is derived using the fact that the 
canonical variables q and p of the Hamilton equations of motion are independent. This fact 
allows the deduction of the force equation from the Schroedinger equation, so the 
Schroedinger wavefunctions can be used straightforwardly to calculate force eigenvalues of 
quantum mechanics. The force equation of quantum mechanics has unlimited utility 
throughout quantum science, being as fundamentally important as the force equations of 
classical mechanics.   
 
                     In Section 3, computer algebra is used to check the hand calculations of Section 
2 and to produce tables of force eigenvalues for well known exact solutions [11, 12] of the 
Schroedinger equation. The existence of pure quantum force is reported for the first time in 
problems such as the particle on a sphere. The force equation can be applied in computational 
quantum chemistry to investigate intra and inter molecular forces and torques of utility in 
molecular dynamics simulation.            
 
                      

2. The force equation and some force eigenvalues.  
 
                    Consider the classical hamiltonian:  
 
H = T + V                                              (1) 
 
where T is kinetic energy and V is potential energy. It may be written as:  
 
H = E                                                (2) 
              
where E denotes total energy. The canonical variables of Hamilton are q and p, and they are 
independent variables:  
 
��

��
 = 0   .                                            (3) 

 
If for the sake of argument q is chosen to be x in one dimension, then:  
 
��

��
 = 0   .                                            (4) 
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The kinetic energy is:  
 

T = 
��

�
                       (5) 

 
so it follows from the independence of x and p that:  
 
��

��
 = 0   .                                            (6) 

 
Therefore:  
 
��

��
 = 

�	

��
      .                        (7) 

 
               Consider the Schroedinger axiom:  
 


̂ ψ = – i  
��

��
                                       (8) 

 
in which 
̂ is an operator acting on the function ψ , known as the wavefunction of quantum 
mechanics. Here  is the reduced Planck constant. It follows that the kinetic energy in 
quantum mechanics becomes an operator:  
 

��  ψ = – 
ћ�

� �
 
���

���                             (9) 

 
and the hamiltonian becomes Schroedinger´s equation:  
 
�� ψ = ( ��  + V) ψ = E ψ                                (10) 
 
Now differentiate both sides of Eq. (10):  
 
�

��
 (�� ψ) = 

�

��
 (E ψ)                                       (11) 

 
It follows that:  
 
�

��
 (�� ψ) = E 

��

��
                              (12) 

 
because the energy eigenvalues E are independent of x. Therefore:  
 

(
���

��
 ) ψ  + �� 

��

��
 = E 

��

��
                         (13) 

 
From the independence of x and p in Hamilton´s equations, it follows that:  
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(
���

��
 ) ψ  = ( 

�	

��
 )ψ                                     (14) 

 
from Eq. (7). The force is defined as:  
 

F = – 
�	

��
  .                              (15) 

 
Therefore the force equation of quantum mechanics follows from Hamilton´s equations:  
  

(�� – E ) 
��

��
 = F ψ   .                                   (16) 

 
This is a new result of unlimited utility throughout quantum science.  
 
                   In Eq. (16) the hamiltonian operator:  
 

�� = – 
ћ�

� �
 

��

��� + V                                 (17) 

 
acts on the derivative of the Schroedinger wavefunction, or in general on the derivative of a 
quantum mechanical wavefunction obtained in any way, for example in computational 
quantum chemistry. The quantum Hamilton equation derived in UFT 176 is:  
 

i ћ 
�

��
 < �� > =  < [�� , 
̂ ]  >                        (18) 

 
where:  
 

< [�� , 
̂ ]  > = i ћ 
�	

��
                        (19) 

 
so it is found, self consistently, that:   
                     
�

��
 < �� > =  

��

��
  =  

�	

��
  = – F  = –  

��

��
   .                (20)  

 
The fundamental result of the independence of x and p in Hamilton´s equation means that:  
 
�

��
 (

��

� �
 ) = 0                                            (21) 

 
so it follows that:  
 
�

��
 (

���

� �
 ) = – 

ћ�

� �
 

�

��
 ∫ ψ*

���

���  �τ   = 0   .           (22) 
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In Eq. (18):  
 
�

��
 < �� > =  – 

ћ�

� �
 

�

��
 ∫ ψ*

���

���  �τ   + ∫ ψ* "� 
�	 

��
 �τ = < 

�	 

��
> = 

�	 

��
  .     (23) 

 
In general therefore:  
 

< 
���

��
 > = ∫ ψ* "� 

��� 

��
 ψ�τ                          (24) 

 
and from Eq. (13) it follows that:  
 

< 
���

��
 > = 

�% �� & 

��
                (25) 

 
as used in UFT 176. This result means that:  
 

∫ ψ*  
��� 

��
 ψ�τ = ∫ ψ*  

�	 

��
 ψ�τ   

 

                             = 
�	 

��
  =  

�% �� & 

��
 = – F     .                                          (26)      

 
              Eq. (16) can be used to find force eigenvalues of exact solutions of the Schroedinger 
equation. As far as we have been able to find by literature search, this procedure has never 
been carried out in quantum mechanics to date and provides fundamental information of 
unlimited utility. The rest of this section gives simple examples amenable to hand calculation, 
and in Section 3, tables of force eigenvalues are given from computer algebra.  
 
            The zero order wave function of the harmonic oscillator [11, 12] is:  
 

ψ' = ( 
�(

ћ)
 )¼ exp ( – 

�(

�ћ
 "�)                           (27) 

 
where x is displacement, m is mass and - the angular frequency of oscillation. Therefore:  
 

�� 
��. 

��
 = (– 

ћ�

� �
 

��

��� + 
/

�
 0 -�"�) 

��. 

��
    .                    (28) 

 
The energy levels of the harmonic oscillator are [11, 12]:  
 

E = ( n + 
/

�
 ) ћ -                               (29) 

 
and the zero order energy level is given by:  
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1' = 
/

�
 ћ -   .                          (30)                  

 
So the zero order force eigenvalue is:  
 

2' = – 0 -�x    .                              (31) 
 
This happens to be the same as the classical result. It shows that the well known zero order or 
“vacuum” energy (22) is accompanied by a hitherto unknown zero order force (23). It seems 
likely that this force is related to the Casimir force, a well known radiative correction. 
 
               The first order wavefunction of the harmonic oscillator is [11, 12]:  
 

ψ/ = A x exp ( – 3 
��

�
 )                             (32) 

 
where:  
 

A = ( 
45

)
)¼ 3½    ,   3 = 

�(

ћ
              (33) 

 
and the first order energy level is:  
 

E = 
6

�
 ћ-    ,  n = 1  ,                                  (34) 

 
so from Eq. (16), the first order force eigenvalue is:  
 

2/ = – 7"                            (35) 
 
where the Hooke law constant is well known to be:       
 
7 = m-� .                                         (36) 
 
By computer algebra it was found that all the eigenfunctions of force for the harmonic 
oscillator are the same as for the zero and first order eigenvalues. There is a zero order force 
which does not exist in classical physics, and this is the first time it has been reported. 
Evidently, these eigenvalues of force are all quantized, in the case of the harmonic oscillator 
they happen to be the same as the classical result for all wave functions.     
 
                The method can be extended to the 1s orbital of the H atom, whose wave function 
takes the format:  
 

ψ/' = e
– r/a                                        (37) 

 
where A is a constant. The hamiltonian operator in this case is:  
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��  = – 
ћ�

� �
 

��

��� + V (r)                       (38) 

 
where the potential is a Coulomb attraction between the proton and electron of the H atom 
together with the repulsive centrifugal force where l is the angular momentum quantum 
number:  
 

V (r) = – 
8�

4)∈.:
  + 

;(;</) ћ�

��:�                                    (39)            
 
and where  ∈' is the S.I. vacuum permittivity and where e is the proton charge [11, 12]. The 
energy levels of the H atom [11, 12] are:  
 

E = – 
ћ�

��=�>�                  (40) 

 
where n is the principal quantum number and where a is the Bohr radius. For the 1s orbital:  
 
? = 1                            (41) 
 
so:  
 

1/' = – 
ћ�

��=�   .                               (42) 

 
Therefore Eq. (16) gives the result:  
 
2/' = 0 .                              (43) 
 
The force eigenvalue in the 1s orbital is zero. This is an explanation of the stability of the 1s 
orbital. There is no way of accounting for this stability in conventional quantum mechanics 
[11, 12] because the 1s orbital has no angular momentum and the most probable point [11] at 
which the electron of the 1s orbital is found is the nucleus. The correct explanation for the 
stability of the 1s orbital is that the classical Coulombic force of attraction is balanced exactly 
by a quantum force hitherto unknown and the net force is zero.  
  
                    The radial part of the 2pz orbital of H is [11, 12]:  
 

ψ�/ = A r e
– r/2a

                       (44) 
 
and the energy level is:  
 

1�/ = – 
ћ�

@�=�                           (45)           
 
so Eq. (16) gives:  
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2�/ = – 
ћ�(: –�=)

�=�:B       .                                                        (46) 

 
In this case there is a net force on the 2pz electron due to the radial part of its complete wave 
function. The latter is a product of the radial function (36) and a spherical harmonic as is well 
known. The force eigenvalues for the H atom are discussed in detail in Section 3. 
 
                 For planar rotation with constant r (the particle on a ring [11]), Eq. (16) becomes:  
 

(�� – E )( 
��

��
 + 

��

�D
 ) =  F ψ                           (47) 

 
and the hamiltonian operator is:  
 

�� = – 
ћ�

��
 ( 

��

��� + 
��

�D� ) .                         (48) 

 
In cylindrical coordinates:  
 
�E

��
 = cosφ 

�E

�:
 – 

GHIJ

:
 
�E

�J
                             (49) 

 
�E

�D
 = sinφ 

�E

�:
 + 

KLGJ

:
 
�E

�J
                             (50) 

 
and if r is constant:  
 
��E

��� + 
��E

�D� = 
/

:� 
��E

�J�   .                                          (51) 

 
Using the results:  
 
�E

��
 + 

�E

�D
 = 

/

:
 ( cosφ – sinφ ) 

�E

�J
                                   (52) 

 
and:  
 
�BE

��B + 
�BE

�DB = 
/

:
 ( cosφ – sinφ ) 

�E

�J
                    (53) 

 
it is found that:  
 

�� ( 
��

��
 + 

��

�D
 ) = – 

ћ�

��:B  ( cos φ – sinφ ) 
�B�

�JB    ,               (54) 
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–E ( 
��

��
 + 

��

�D
 ) =  

–N 

:
 ( cosφ – sinφ ) 

��

�J
    .                        (55) 

 
The wave function in general is:  
 

 ψ = A exp ( i 0O φ ) + B exp (– i 0O φ )                             (56) 
 
with energy levels:  
 

E =  
ћ��P

�

��:�     ,                                          (57) 

 
so it is found that:  
 
F = 0 
 
for all quantum numbers 0O . In this case all the force eigenvalues are zero.  
 
             Finally for three dimensional rotation (the particle on a sphere), the quantum force 
equation becomes:  
 

(�� – E )∇∇∇∇ ψ = F     ψ                                            (58) 
 
where, in spherical polar coordinates:  
 

∇∇∇∇ ψ = 
��

�:
 Q: + 

/

:
 
��

�R
 QS + 

/

: GHIR 
 
��

�J
 Qφ  .                               (59) 

 
There is no classical potential V, so the hamiltonian operator is:  
 

�� = – 
ћ�

��
 [

/

:� 
�

�:
 (T� U

UT ) + 
/

:� GHIR 
 

�

�R
 (sinS

U
US ) + 

/

:� GHI�R 
 
���

�J�   .              (60) 

 
The energy levels are:  
 

E = 
ћ�

��:� l ( l + 1 )                                 (61) 

 
where l is the angular momentum quantum number [11, 12] and 0T� is the moment of 
inertia. There are two quantum numbers l and m, and the wavefunctions are the spherical 
harmonics [11, 12]:  
 
ψ = Y;�   .                                             (62) 
 
In the simplest case:  
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ψ'' = 
/

�)½                            (63) 

 
so:  
 
F'' = 0  .                                          (64) 
 
In this case there is no force eigenvalue. Secondly, consider as an example:  
 

ψ/' = 
/

�
 (

6

)
)½ cos θ .                         (65) 

 
Therefore:  
 

∇ ∇ ∇ ∇ ψ/' = 
/

:
 
��].

�R
 QS = – 

^

:
 sinSQS                 (66) 

 
and:  
 

�� (∇ ∇ ∇ ∇ ψ/') = – 
ћ�

��:B ( 
KLG _

GHIR
 
���].

�_�  + 
�B�].

�_B  ) QS           (67) 

 

                    = 
^ ћ�

��:B (
KLG�_

GHIR
 + sinS ) QS                               (68) 

 
with:  
 

E ∇ ∇ ∇ ∇ ψ/' = – 
^ ћ�

�:B sinS  QS  .           (69) 

 
So:  
 

(�� – E )∇ ∇ ∇ ∇ ψ/'    = = = = FFFF     ψ/' = 
^ ћ�

��:B (
KLG�_

GHIR
 + 3 sinS ) QS                     

 
                              = A cos θ QS                                              (70) 
 
and there is a non-zero force eigenvalue:  
 

2/' = 
 ћ�

��:B (
KLG _

GHIR
 + 3 sinS )   .                              (71) 

 
 
This is a pure quantum force eigenvalue, hitherto unknown for the particle on a sphere. There 
is no potential and no classical force.      
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3. Evaluation of force eigenvalues by computer algebra.  
 
In the previous section some examples of force eigenvalues have been evaluated. Here we 
give a more complete overview obtained by computer algebra, so cumbersome and error-
prone hand calculations can be avoided. 
 
3.1 Harmonic oscillator 
 
The energy eigenvalues of the quantum mechanic harmonic oscillator are given by Eq. (29).  
 
The Hamiltonian is                 
 

H� = −
ℏ�

�e

f�

fg� + 
/

�
mω�x�            (72) 

 
The first four eigenfunctions as given in [11] have been evaluated by applying Eq. (16). The 
result is the same as for the zero order eigenvalue in all cases, see Table 1. Obviously this 
result is independent on the quantum number n. 
 
n E F 

0 1

2
ℏω 

−mω�x 

1 3

2
ℏω 

−mω�x 

2 5

2
ℏω 

−mω�x 

3 7

2
ℏω 

−mω�x 

Table 1. Energy and force eigenvalues for the harmonic oscillator. 

 
 
3.2 Particle on a ring         
 
For a particle moving on a ring (i.e. a circle with a fixed radius) the Hamiltonian in spherical 
coordinates according to Eqs. (48, 51) is  
 
 

 H� = −
ℏ�

�eo� 
f�

fJ�                      (73) 

 
For an eigenfunction of type (56) with energy levels (57) depending on the angular quantum 
number 0O. As already stated in section 2, all force eigenvalues vanish. In this case the force 
is actually a torque which is zero in general (Table 2). A non-zero torque requires a 3-
dimensional motion. 
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Quantum 

number 

E F 

pq ℏ�

2mr� 0O
� 

0 

Table 2. Energy and force eigenvalues for a particle on a ring. 

 
 
3.3 Spherical harmonics   
 
The Hamilton operator for spherical harmonics in spherical polar coordinates (θ, ϕ) is 
 

H� = −
ℏ�

�eo� (
/

GHI _

f

f_
 (sin θ  

f

f_
 ) + 

/

(GHI _)� 
f�

fJ� ) .                       (74) 

 
Since this is a 2-dimensional problem, we have to consider the θ and ϕ component of force 
separately. With energy eigenvalues of Eq. (61) and eigenfunctions given in [11] the results 
of the ϕ component of force (more precisely: torque) are given in Table 3. Angular 
momentum quantum numbers are l and m. For states with l = 0 there is no torque, indicating 
again the stability of hydrogen 1s function. The ϕ components of force depend on the angle θ. 
This dependence has been plotted for some quantum numbers in Figs. 1-5, together with the 
corresponding wave functions. There are poles in the force, but only at angular values where 
the wave functions are zero. This inhibits divergence for the expectation values of force. 
 
l m E Fϕ 

0 0 0 0 

1 0 ℏ�

mr� 
0 

1 1 ℏ�

mr� 
iℏ�(2 (cos θ)� −1)

2mr6(sin θ)6  

2 0 3ℏ�

mr� 
0 

2 1 3ℏ�

mr� 
iℏ�(4 (cos θ)� −3)

2mr6(sin θ)6  

2 2 3ℏ�

mr� 
iℏ�(4 (cos θ)� −3)

mr6(sin θ)6  

Table 3. Energy and force eigenvalues for the harmonic oscillator, ϕ  component. 

 
The θ components of force are nonzero with exception of the state with l = m = 0, see Table 
4. The plots in Figs. 6-10 show the same characteristics as for the ϕ components, however the 
force changes sign for S =

)

�
 in all cases. This seems to be a basic geometric property. Since 

the wave functions are complex valued, their absolute values have been graphed. 
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l m E Fθ 

0 0 0 0 

1 0 ℏ�

mr� 
ℏ�

2mr6 cos θ sin θ
 

1 1 ℏ�

mr� 
ℏ� cos θ

2mr6(sin θ)6 

2 0 3ℏ�

mr� 
3ℏ� cos θ

3mr6(sin θ)6 − 2mr6 sin θ
 

2 1 3ℏ�

mr� 
ℏ�

2mr6 cos θ (sin θ)6 

2 2 3ℏ�

mr� 
3ℏ� cos θ

mr6(sin θ)6 

Table 4. Energy and force eigenvalues for the harmonic oscillator, θ component. 

 
3.3 Hydrogen radial functions 
 
The most interesting force eigenvalues are certainly those of the hydrogen atom. The 
Hamiltonian is given by Eq. (38) with the potential (39) which consists of the Coulomb part 
and so-called repulsive angular momentum potential. The energy eigenvalues only depend on 
the principal quantum number n as given in Eq. (40). The radial wave functions were taken 
from [11] again. The resulting force eigenvalues are listed in Fig. 5 for the first s, p and d 
orbitals. All eigenvalues are different and there is no force for the 1s state as noticed already 
in section 2 of this paper.  
 
 
n l E F 

1 0 
−

ℏ�

2ma� 
0 

2 0 
−

ℏ�

8ma� 
ℏ�

mar� 

2 1 
−

ℏ�

8ma� 
r ℏ� − 2a ℏ�

2mar6  

3 0 
−

ℏ�

18ma� 
10 r� ℏ� − 114 a r ℏ� + 243 a� ℏ�

6 m a r4 − 54 m a�r6 + 81 m a6r� 

3 1 
−

ℏ�

18ma� 
4 r� ℏ� − 36 a r ℏ� + 54 a� ℏ�

3 m a r4 − 18 m a�r6  

3 2 
−

ℏ�

18ma� 
2 r ℏ� − 12 a ℏ�

3mar6  

Table 5. Energy and force eigenvalues for radial wave functions of the Hydrogen atom. 
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Forces and radial wave functions are graphed in Figs. 11-16. There are some poles in force 
where the wave function crosses zero, similar to the case of the spherical harmonics. The 2s 
state is attractive near to the nucleus while the 3s state is not. In some cases there are zero 
crossing of the force where the wave function has a minimum or maximum. This could mean 
that charge is shifted to places of high probability density. For molecules this could have to 
do with the fact that the same type of orbitals can be binding or anti-binding, depending on 
the symmetry. The force eigenvalues have the potential of giving new insight into chemical 
bonding and stability mechanisms. 
 
Finally – although F is an eigenvalue and not an operator – it could make sense to compute 
the expectation value of F with the wave functions: 
 
w2x = y z∗2 z T��T

|

'
.           (75) 

 
 This gives the results listed in Table 6 (in atomic units). Since the radial integration is 
weighted by the factor T�, the behaviour of F near to r = 0 plays no role. The results are listed 
in Table 6 and give the astonishing result that only the 2s and 3s states produce a net force. 
This does not mean that no other forces are present, these would be torques of the angular 
behaviour. 
 
 
n l <F> 

1 0 0 

2 0 
−

1

4
 

2 1 0 

3 0 
−

2

9
 

3 1 0 

3 2 0 

Table 6. Expectation values of force for the Hydrogen atom. 
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Fig. 1. ϕ components of wave function and force for spherical harmonics, l=1, m=0. 

 
 

 
Fig. 2. ϕ components of wave function and force for spherical harmonics, l =1, m=1. 
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Fig. 3. ϕ components of wave function and force for spherical harmonics, l =2, m=0. 

 

 
Fig. 4. ϕ components of wave function and force for spherical harmonics, l =2, m=1. 

 
 
 
 



17 
 

 
Fig. 5. ϕ components of wave function and force for spherical harmonics, l =2, m=2. 

 

 
Fig. 6. θ components of wave function and force for spherical harmonics, l =1, m=0. 
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Fig. 7. θ components of wave function and force for spherical harmonics, l =1, m=1. 

 
 

 
Fig. 8. θ components of wave function and force for spherical harmonics, l =2, m=0. 

 
 
 



19 
 

 
Fig. 9. θ components of wave function and force for spherical harmonics, l =2, m=1. 

 

 
 
Fig. 10. θ components of wave function and force for spherical harmonics, l =2, m=2. 
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Fig. 11. Radial wave function and force for H 1s. 

 

 
 
Fig. 12. Radial wave function and force for H 2s. 
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Fig. 13. Radial wave function and force for H 2p. 

 
 

 
Fig. 14. Radial wave function and force for H 3s. 
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Fig. 15. Radial wave function and force for H 3p. 

 

 
Fig. 16. Radial wave function and force for H 3d. 
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