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Abstract.

The force equation of relativisticagium mechanics is derived from ECE generally
covariant unified field theory and the various terdefined in the relativistic hamiltonian.
The correct origin of relativistic quantum mechanis now known to be the fermion
equation, the first single particle equation of feemion because it can be derived without
negative energy. Having derived and defined theilb@man in a Schroedinger like equation,
the relativistic force equation follows. The fiigenvalues of the relativistic quantum force
equation are computed.
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1. Introduction.

In recent papers of this eerf1-10] two kinds of novel force equation of
guantum mechanics have been derived from the ateiof generally covariant unified field
theory. The first one is the quantum Hamilton egumetand the second a more useful force
equation which was derived in the preceding pag€r W76 from the Schroedinger equation,
itself a limit of the ECE fermion equation deriviedUFT 172 ff. from Cartan geometry [11].
Hamilton’s dynamics [12] give the force equatiortted second kind from the Schroedinger
equation using the independence of Hamilton’s daabrvariables. The non relativistic
guantum force equation of the second kind usesmtinefunctions and eigenvalues of the
Schroedinger equation to derive force eigenvaluemightforwardly for the first time in
guantum mechanics. It is well known that computaloquantum chemistry provides the
necessary wavefunctions and eigenvalues for a rasfgsystems: atoms, molecules,
semiconductors, nanostructures, bionanostructdés®) self structuring and so forth. In
UFT 176 simple examples of force eigenvalues warengfrom exact solutions such as the
harmonic oscillator and H atom. For the harmonicillagor every force eigenvalue was
found to be the same as the classical value, imgjuithe zero point force eigenvalue which
indicates the presence in the vacuum of a hithemtchown force of utility for new energy
research. For the H atom it was found that thersiglele of force for the 1s orbital is zero,
giving the first correct explanation for the stdiibf the 1s orbital. Characteristic patterns of
force eigenvalues were found for other H atom atbjtpatterns that can be extended to all
aspects of quantum mechanics to give an entirely s@ence of materials, a new type of
guantum field theory, and new type of quantum @ptic

In Section 2 this work is extendedhe relativistic quantum force equation, which
is derived from the fermion equation of ECE themithout the use of negative energy. The
fermion equation is written as two simultaneousatigms which can also be derived [13]
from the Lorentz transform of the Pauli spinor. 3&@quations are subject to a well defined
mathematical transformation which gives the varimums in the relativistic hamiltonian in a
Schroedinger like approximation [14, 15]. Thesdude the mass term, spin orbit term, and
Darwin term, and a relativistic correction of thmetic energy term of the Schroedinger
equation’s hamiltonian operator.

In Section 3 some of the for@gervalues of relativistic quantum mechanics are
computed for the first time from the force equatainthe second kind extended to special

relativity. These include force eigenvalues fomspibit interaction, which is responsible for
the important fine structure in atomic and molecs|aectroscopy.

2. Derivation from the fermion equation.

Consider the fermion equatdtJFT 172 ff. in the format:

(F—co.p) @f = m 2ot (1)
(E+co.p) ot =mcif (2)



wherekE is the total energy, regarded as an eigenvalubwdwerep is the operator defined by
Schroedinger’s axiom, the basis of quantum meckanic

py=-ihVy 3
whereh is the reduced Planck constant ajpch wavefunction. Here is the Pauli vector
made up of Pauli matrices) is the mass¢ the speed of light in vacuo, apd andgF
the left and right Pauli spinors, which in ECE theare derived from elements of the tetrad
in Cartan geometry. In the presence of a poteatiatgy, denoted:

V=eop 4)
where @ is the scalar potential and - e the charge orligwron, Eqgs. (1) and (2) become:
(E-V-co.p)eR=mc? e* (5)
(E-V+co.p) el =mc? @R (6)
As in UFT 173 make the mathematical transformations

©F = o + @5 @)
D" = ¢f — 5 )
which transform Egs. (5) and (6) into:

(E-V-mc®)@§=co.p ¢s (9)
(E-V+mc?)@§=co.p ¢ (10)
The energy relative to the rest energy, the raefio/kinetic energy, is defined as:
€e=T=E-mc? (11)

so Egs. (9) and (10) become:

co.pes=(€-V)@f (12)
co.peR=(e-V+2mc?) @k . (13)
From Eq. (13),

co.p

L — R
= 14
Ps E—V+2chCPS ( )




soin Eq. (12):

co.p )
€E-V+2mc?

€ ¢ =V @f +c?c.p ( (15)

in which the operatow .p operates on the complete term inside the bradksitsy the
Leibniz Theorem.

In the approximation:

eE-V
2m c?

e-V
2mc?

)t~ 1=( ) (16)

the term inside the brackets becomes:

(1+

1 e-V
cof =Vef+-—0.p((1-G—3) o.Pof (17)

so Eq. (15) becomes the Schroedinger-like equation:

A2

p c.p N
EL'J:VL'J-'-ZTH,Lp_4m2C2((E_V)°-'pL|J) (18)

which can be expanded to:

1
€=V —)w— — 5 0 B(ECPU) 0 Ve p) Y=ol (19)

In the approximation:
v <<C (20)

the energye , the relativistic kinetic energlyis approximated by:

pZ
T:E—mcz—"% (21)

S0 using this approximation in the third term o tight hand side of Eg. (19) gives:

2 ~ ﬁél-
G.ﬁ%(x.p =m (22)
and Eq. (19) becomes:
A4
p ~ o
=(v+ —)w— 5V t550.p(Ve.pY) (23)

where we have used:



6.po.p=p*. (24)
The Schroedinger equation is the néativéstic approximation:

A2

EY=VEI)Y (25)

The third term on the right hand side of Eq. (28)the mass term, omitted in some
approximations [13]. The fourth term is:

1 R R ~ih
c.p(Ve.py)=

mZe2 c.VWVe.pVy) (26)

4m?2c?
The right hand side is expanded with the Leibnizdrem:
c.VWVe.py)=06.VVe.py +V(@©.V)(c.py) . (27)

The electric field strength is defined as

E=-vQ (28)
so:
c.VVie.py=—eoc.Eoc.py . (29)

By Pauli algebra:

c.Ec.p=E.p+ic.Exp . (30)
Therefore:
Hy=€ey , (31)
ﬁ:e(p+ﬁ2 _ P _eh 6. Exp- i (VV)V - LR (32)
2m  8m3c2  4m?2c? 4m?2c2 4m?2c?
Eq. (31) therefore becomes the Schrogdlitype equation:
Hy=€ey , (33)
where the hamiltonian is:
H:v—i(u LA nivt _ _eh o.Exp- i (VV)V . (34)
2m 2m?2c2 8m3c2  4m?2c? 4m?2c?



The fourth term is the spin orbit term with the reat Thomas factor, the fifth term is the
Darwin term, and the sixth term a relativistic emtron of the kinetic energy operator of the
Schroedinger equation. In a Coulomb potential dhalecoordinates:

e

== 35
¢ 47T€0T ( )
the electric field strength is:

et r a6

© 4mey 13 (36)
whereeg, is the S. I. vacuum permittivity. So the spin otmmiltonian is:
a e’h L 37

= o .
S0 " 16megm?2c2r3 37)

wherelL is the orbital angular momentum operator. The spigular momentum operator is
defined as:

S=

N | =

h 6 (38)

where & is also a vector operator. Therefore:

. e?

Hs, S L=¥@)S.L (39)

 8megm?2c2r3
and the complete hamiltonian operator in this apipnation to the fermion equation is:

h? htv4 h?

~ 2 -
-\ - — + + -
A=V-——(1 )V Hyo =~ ——5 (VV)V . (40)

2m?2c? 8m3c?

Finally, the force equation of the sec&m is obtained as:

(H-€)Vy=Fy (41)

in spherical polar coordinates. In contemporaryecpdckages in computational quantum
chemistry a hamiltonian of this type is used ata#isg point, so the force equation (41) can
be incorporated in code packages to give an udagraimount of new information.

Now apply the force equation (41) to atomiwith the simplified hamiltonian [14]:

2

~ 2 .
A=—-—v2 +V+H, . 42
2m S0 (42)



The wavefunction of the statmlm; > of H is:
Inlm; >Ry (r ) Vi, (6, @) (43)

which is a product of well known radial and spharibarmonic components. The radial
average of the spin orbit hamiltonian [14] is:

hc&y =h? [[78 (r) Rp® (r)rldr (44)
and gives the average energy of interaction oflectren in a given orbital with its own spin.

In a hydrogen-like atom with atomic numl&rthe Coulomb potential energy is:

_ -Ze? (45)
4TTEQT
For H:
Z=1, (46)
and for H:
2
§(r) = P (47)
Therefore:
1 1
< r3 Znl = agndl(l+)(1+1) (48)
where the Bohr radius is
4mh?%¢,
Ao =~ 3% (49)
Therefore for an electron in H with quantum nummandl:
Root?
S = n3l(l+°c1)/z)(l+1) (50)
where the fine structure constant is:
62
a= =0.007297351 (51)

- 4mhceg



and
4

hCR, = ——— = 2. 179908 x 18° J (52)
® - 8602h2 o |
In general:
_ Rea?z*
S = B ) (14 1) (53)
so spin orbit interaction is proportionalZdand in large atoms is very important.
The first order correction of a stateés ;jm; > from perturbation theory is:

Eso =< nls;jm; |Hgp | nls;jm; > (54)
so:
(H-E+Eg VY =F ¢ (55)
We have:
I _ 1 .
L.SInIS;Jm,>=E(j2—lz—sz)|n|S;J‘ml> (56)
because:
J2=IL+S]2 =12+82+2LS . (57)
So:

1
Eso =2 b2 (j( + 1) = I(1 +1) = S(s +1))< nls;jmy | £ () | nls;jm, >

1 .
=5 he gy (J0 +1) = 10 +1) = s(s +1))
iG+1)-1(l+1)-s(s+1
_ghep,, [ 10 DM —sG 4 58)

n31(1+%)(1+1)
Therefore the force eigenvalues are evaluated feos. (55) and (58) using the H
wavefunctions s in the first approximation. This is because spipitosplitting in H is very
small. For example for the 2 p electron:

n=2 l=I (59)



energy level separations and transition wavenundorersf the order

Re ~ 10 cm? (60)

The magnitude of the spin orbit interactimonstant ise?R.,/24 , i..e R/ 4.51 X 18
fractions of a wavenumber. So using the H wavefanst { is a very good approximation.
The permitted states of angular momentum from tesysnade up of two sources of angular
momentum are given by the well known [14, 15] C&b&ordan series:

=it htie—1, =2,
(61)
m]-=mj1+m]-2
so for a 2p electron:
=2 and - 62
j=3 and - (62)
and in Eq. (58):
. 3 1 1
n=2 ,1=1, j=—and - , s==— (63)
2 2 2

soF can be worked out from Eq. (55).

3. Computer evaluation of force eigenvalues.

In the previous section the spin-orbit splittingfofce eigenvalues has been evaluated. Here
we give the corresponding analytical values for tdgen obtained by computer algebra.
After that we present the splitting of force eigaluwes by a magnetic field.

3.1 Spin-orbit splitting

For Hydrogen, the Hamilton operator with neglectbfrelativistic effects except spin-orbit
coupling has been given in Eq. (42) and the follmyvequations. The relativistic quantum
numbersj and m; have to be used. Farstates there is no spin-orbit splitting because th
angular momentum is zero. Using the analytical whwections given in [14], the force
eigenvalued- listed in Table 1 are obtained from Eq. (55) wheeie the Bohr radius anch
the electron mass. The eneigy has to be replaced by Eq. (58) for completendss.fdrce
values in Table 1 are classified according to tbe-relativistic quantum numbedr the
relativistic spin splitting is introduced by usitite termg = [ + s in the formula folEs,. The
results have been graphed in Figs. 1-3. It caneke that the splitting is symmetric outside
the core region. There are poles where the wavweiimhas a zero crossing, leading to finite
values ofF -y as already discussed in UFT paper 177.
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 ma?
2 0 h2 0
8ma?
2 1 h? (mr3 — 2amr?)Eg, + rh? — 2ah?
8ma? 2amr3
3 0 h? 0
18ma?2
3 1 h? (mr* — 12amr3 + 18a?mr?)E,, + 4r?h? — 36arh? + 54a%h?
18ma?2 3amr# — 18a2mr3
3 2 h? (mr3 — 6amr?)E, + 2rh? — 12ah?
18ma? 3amr3

Table 1. Energy and force eigenvalues for the Hydrogen with spin-orbit splitting energy E,,.

3.2 Magnetic splitting

Degenerate spectral lines are split by an extemagnetic field as known by the Zeeman and
Paschen-Back effect. The Hamilton operator in redativistic approximation [13] is given in
this case by

a2
A= 1v-6.8 (64)

2m 2m

Assuming only a Z component Bfthen leads to

o-B=|¢ 3l (65)

so we obtain two values fér:

N 2 52
Hy=—-—_4+V—21By, (66)

2m 9x2
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~ % 92 eh
H—____+V+EBZ- (67)

2m 0x2

Assuming a weak magnetic field, the wave functibthe Hydrogen atom in the undistorted
state can be taken to evaluate the force eigenwBluandF. from

(ﬁ+——E)%%::F+¢, (68)
(ﬁ_——E)%%::F_¢, (69)

The results are shown in Table 2, where only thetpe value forB; has been takefk. is
obtained by changing sign Bf. SettingBz=0 gives the force values for the undistorted atom
as already derived in UFT paper 177.

In Figs. 4-9 the force eigenvalues for H are shawan enlarged scale in order to make the
effects visible. The radially weighted probabildgnsityy - 2 is plotted for comparisori.
and F. show a symmetric splitting of the origingl (with B; =0). Beyond a certain nodal
point the splitting is nearly quadratically increegswith the radius coordinate. Also tee0
state is split, where n& is present without a magnetic field. Near to tlwdepradii, the
behaviour is similar to spin-orbit splitting.

|
10 K2 heBy

B ma?2 2am
2 0 h? h(er3B; — 4aer?B; — 4rh + 8ah)
8ma? 4amr?
2 1 h? h(r — 2a)(er?B; — 2h)
8ma? 4amr3

30 h?  h(2er*B; — 30aer3By + 81aer?By — 20r?h + 228arh — 486a%h)

" 18ma2 6amr?(2r? — 18ar + 27a?%)
3 1 h? h(er*B; — 12aer3B; + 18aer?B; — 8r2h + 72arh — 108a%h)
18ma? 6amr?(r — 6a)
3 2 h? h(r — 6a)(er?B; — 4h)
18ma? 6amr3

Table 2. Energy and for ce eigenvalues for the Hydrogen with magnetic field B;.
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Fig. 1. Spin-orbit splitting of Force eigenvalue fo 2p.
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Fig. 3. Spin-orbit splitting of Force eigenvalue fé 3d.
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Fig. 7. Magnetic field splitting of Force eigenvalfor H 3s.

40

30

20

10 |

psi“r'2, F
o

10

rlaul]

15 20

Fig. 8. Magnetic field splitting of Force eigenvalfor H 3p.

15



40 . . .

psifr*t2 ——
F
30 Fr —— |
Fo—
20 -
10 .
v
€ o
5
o
A0 | -
20 | J
30 | J
_40 1 1 1
0 5 10 15 20

r{aul]

Fig. 9. Magnetic field splitting of Force eigenvalfor H 3d.
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