Computing the spectrum of elementary particles

Horst Eckardt!
Alpha Institute for Advanced Studies (ATAS) and

Unified Physics Institute of Technology (UPITEC)
Paper 443 Copyright © by AIAS

September 1, 2020

Abstract

A numerical method for computing wave functions and masses of el-
ementary particles is developed. It is based on the ECE wave equation,
which is a quantized form of the Einstein energy equation, extended for
general relativity. The method is developed in analogy to eigenvalue prob-
lems of solid-state physics.
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1 Introduction

To explain elementary particles, the so-called standard model is used today.
This is a classification scheme based on symmetry groups. Although gilded by
some mathematics, there is no equation set from which all quantities like mass,
charge or spin can be derived ab initio. In contrast, consider equations of motion,
which deliver all types of observables, in other fields of physics. For elementary
particles, such a method does not exist. In addition, many “particles” are visible
only for tiny fractions of a second, so it is questionable if these transitional states
can be given the status of a particle at all. Quantum mechanics is applicable
only in a rudimentary way. One would need a unification of quantum mechanics
with general relativity, which is not existent in standard physics to date.

Alternative approaches come from the side of general relativity. Bruchholz [5]
has developed a method of investigating the stability of equations of general rel-
ativity combined with electromagnetism, which were derived by Rainich [6].
Bruchholz solved these equations numerically in a way that depends on pa-
rameters which determine particle characteristics like mass, spin, and magnetic
moment, for example. He found “islands of stability” for these quantities ex-
actly where they coincide with their physically known values. Even masses of
neutrinos were predicted.

The method used in this paper is based on standard procedures of compu-
tational quantum chemistry or solid state physics. The quantized form of the
ECE wave equation [1-3], which has been extended in range to general relativ-
ity, is taken as the basis. This extension, called m theory, is an application of
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the principles of general relativity to a centrally symmetric spacetime. m the-
ory has already been applied to interactions of elementary particles [3]. In this
paper, the structure of particles itself is investigated. A practical computation
scheme is developed, although its numerical application has yet to be realized.

2 Elaboration of the method

The Einstein energy equation in Minkowski space reads:
E? = ?p* + m2ct, (1)

where ¢ is the vacuum velocity of light, p the particle momentum and m the
particle mass. The term “m” for mass should not be confused with “m theory”,
where m stands for a function m(r), describing the space compression or cur-
vature for a radial coordinate r in a spherically symmetric spacetime. The m
space is a space of general relativity. The Einstein energy equation in m space
is the generalization:

E? = *p? + m(r)m?c*. (2)

Quantization is achieved by the replacement rules of ordinary quantum mechan-
ics:

p — —ihV, (3)
E — zh% (4)

This transforms Eq. (2) into a quantized energy equation for time-independent
quantum states 1):

2 meN?  —
V2 +m(r) (55) = 0. (5)
For m(r)=1 this is the standard wave equation:
20+ (M) =
Vi + (55) =0 (6)

with oscillatory solutions. In the case where m(r) # 1, this equation resembles
the Bessel differential equation, as was shown in [4].
Eq. (5) is an equation of the generalized eigenvalue problem

A+ \Byp = 0 (7)

where A and B are matrices, v is an eigenvector and \ the corresponding eigen-
value. This equation can be developed as follows. We expand the wave function
1) by a set of basis functions ¢;:

e(r) = Z cii(r) (8)

with development coefficients ¢;. The aim is to find the coefficients ¢; and
eigenvalues A from which the particle masses emerge via

A= (%)2. )



Inserting Eq. (8) into (5) gives
20,6, MEVEND e =
zi: Vicp; + m(r) ( A ) ; ci¢i = 0. (10)

Such an equation can be obtained in more suitable form from the variational
principle, which is used, for example, to solve the Schrodinger equation. Apply-
ing the minimization of total energy,

§ (E*) — min., (11)

means that we have to minimize the expectation value of E, or E? in our case.
According to the quantized form (5) of the energy equation, we have to evaluate

2
(E?) = /¢*V2¢dr+/¢*m(r) (%) pdr. (12)
Inserting the expansion (8), the right-hand side can be written
% X me\ 2
/Z(Cj¢j) \Y& Zci(bidT + /Z (Cj¢j) Hl(’l") (?) ZCNZ‘dT. (13)
J J J J
Allowing for complex coefficients and basis functions, this can be rewritten as
. . me 2
/chqi)jvzz:ciqﬁich—!—/ch¢jm(r) (?> ZcigéidT, (14)
J J J J
and finally, by pulling the constant terms out of the integrals,

Zc;ci/¢;v2¢id7'+ (%)ZZc;ci/(b;m(r)@dr. (15)
i i

The coefficients have to be determined in a way that the total energy is minimal.
This is achieved by requiring that

gor (E7) =0 (16)

J
for all coefficients c}. (Alternatively, one could take the derivative for ¢;.) Then
the equation

Zci/qﬁ;VQqﬁidT—F /\Zci/qﬁ;m(r)d)idr =0 (17)
(2% (2¥]

follows with eigenvalue A defined by Eq. (9). For N basis functions we obtain
N eigenvectors c;; and N eigenvalues )\ where k& numbers the eigen states.
Eq. (17) has the form of a generalized eigenvalue problem:

Aty + ABih =0 (18)

with matrix elements

Ay = / 5V hidr (19)



and
2
By = 15 [ oim(r)ondr (20)

and eigenvalues m? which must be positive. This implies certain mathematical
properties of A and B. For example, if the matrices are Hermitian, then the
eigenvalues must be real. If a matrix is positive definite, all eigenvalues are
positive.

It is not necessary for the basis set {¢;} to be orthogonal. This would be
required if Eq. (17) had to be an ordinary eigenvalue equation with B being
the unit matrix. However, the presence of the function m(r) inhibits this. In
the case where m(r)=1, matrix B is called the overlap matrix of basis functions
and defines a scalar product:

<@¢»:/@@m. (21)

The eigenvalue equation (17) can be solved numerically, if the integrals can be
computed analytically. With additional effort, such a solution is also possible in
the case where the integrals have to be solved numerically. The matrix elements
(¢, ¢;) always represent a kind of structure constants.

3 Summary

As developed in this paper, the internal structure of elementary particles may
be calculated by an eigenvalue computation scheme. The results will be the
matter density |¢)|? and the corresponding mass. This method can be extended
to electric and spin structures by using other fundamental equations. Instead of
the Einstein energy equation, the ECE fermion equation may be used. Also, an
alternative method such as that of Bruchholz could be implemented, which is
based on stability studies of solutions. As a refinement of the method developed
in this paper, the original ECE wave equation

O A% + RA% =0 (22)

could be used [2]. Here O is the d’Alembert operator, A% is the electromagnetic
4-potential and R is a curvature scalar. Even time-dependent processes could
be investigated. However, this equation requires knowledge of the full spacetime
geometry via R.

The next step of development will be the definition of suitable basis functions
¢i, and the preparation of a numerical package like LAPACK for solving the
eigenvalue problem.
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