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Abstract

In this paper, we show that a totally antisymmetric torsion tensor implies that four unique scalars
completely describe the state of torsion on a four-dimensional Riemann- Cartan manifold. These
scalars form a vector proportional to the Hodge Dual of the torsion tensor.

The metric connection is shown to consist of a totally antisymmetric component and a symmetric
component containing only diagonal elements when the ECE constraint of an antisymmetric
metric connection is applied. This symmetric component when summed along the diagonals
produces three one-forms which are all assumed equal.

From this, an asymmetric rank two reduced curvature tensor, similar to the Ricci curvature tensor is
developed. It is shown to contain a symmetric linear component which can be related to the
Einstein general theory of relativity, an antisymmetric component which links to the Einstein,
Cartan, Sciama, and Kibble torsional extension of Einstein’s earlier work, and a symmetric non-
linear curvature term that could be interpreted as the propagation of a non-linear wave.

ECE theory has assumed that constraints imposed by commutator antisymmetry meant that the
metric connection was antisymmetric with no non-zero symmetric elements. The question of
vanishing diagonal element in the symmetric part of the connection is vague however. When this
restriction is relaxed, it allowed a seamless flow or bridge from the general relativity of Einstein to
one containing torsion such as the ECE theory. The flow to one of the earliest torsion-curvature
relativity theories as provided by Einstein, Cartan, Sciama and Kibble is also demonstrated.
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Introduction

The idea of a vector-based torsion field is not new [1,2]. Socolovsky for example, demonstrated
that a totally antisymmetric torsion tensor implies the validity of the equivalence principle of
general relativity, and that this tensor field could be used to describe Newtonian gravity. Fabbri [3]
developed the geometry for the completely antisymmetric torsion tensor assuming metric
compatibility. He demonstrated that this allows writing the metric connection as the sum of a
totally antisymmetric connection and a symmetric connection. He also has shown that the Bianchi
identity in this limited torsion plus curvature field bears a strong resemblance to the Einstein-
Cartan-Sgiami-Kibble model of relativity. Socolovsky [1] demonstrated that this was a necessary
and sufficient condition for the creation of a local inertial coordinate system at any point in a four-
dimensional space.

This paper, an extension to the previous works of the authors [4,5,6], introduces the Hodge Dual of
the totally antisymmetric torsion tensor which is shown to be a 4-vector. It is assumed that the
reader is familiar with the proofs, based on the antisymmetry of the commutator [11] that the
metric connection is antisymmetric except possibly for its diagonal elements. In this paper it is
shown that the Levi-Civita connection, the symmetric part of the metric connection, must be
purely diagonal.

The Metric Connection for a Totally Antisymmetric Torsion

In this section, properties of a Riemann-Cartan geometry are given when a non-trivial torsion
tensor exists, and is totally antisymmetric. The following are assumed: for a four dimensional
spacetime, the torsion is non-vanishing and totally antisymmetric, the metric is defined and
satisfies the metric compatibility equation, and the metric connection is antisymmetric except for
the diagonals which may be non-zero, and is totally diagonally symmetric. This latter restriction is
shown to reduce equation complexity. We note that Trautman [[12], equation 12], advises that the
transposed connection of a Riemann-Cartan space is metric if and only if the {torsion} tensor is
completely antisymmetric. If so, assuming metric compatibility is equivalent to a totally
antisymmetric torsion, and vice versa.

Consider the tensor for a totally antisymmetric torsion on a Riemann-Cartan manifold in four
dimensions. This class of manifold is one that is both metric compatible, and supports non-zero
torsion and also been termed metric hyper-compatible [3,7].

Previously, some ramifications of a totally antisymmetric torsion tensor were presented by the
authors [4,5,6] within the framework of the ECE formulation of Cartan geometry. In a four-
dimensional Riemann-Cartan spacetime, this antisymmetry is given by [[6], equation 2.54]

Py ==1y; T, ==T%; Ty ==T. (1

Applying antisymmetry a second time gives,
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Tp = TH = TV . (2)

The torsion tensor remains totally antisymmetry when its indices are raised or lowered through the
application of the metric tensor because the product of a symmetric tensor and an antisymmetric
tensor remains antisymmetric.

All of the the diagonal elements of a totally antisymmetric torsion tensor are zero (summation over
repeated indices is not implied in this instance), i.e.

Py =1 =T, =0, ()

Upon examining equations (1) through (3) in a term by term manner, we see that there are four
scalars that describe the off-diagonal elements in the torsion tensor. For example, if we examine
the case where p=0,u=1 and v=2, we can define a scalar 73 such that

T3=T0, =Ty =T =~ 1% =-Tln=-T 4

which has magnitude |73| and a basis vector associated with the index “3”, an index value differing
from all of the index values for the associated torsion tensor elements, in this case 0, 1, and 2.
Doing this for each set of values for p, u and v, results in four components of a covariant 4-vector
T, defining the totally antisymmetric torsion with its components aligned with each of the unit
vectors defining the basis for the torsion tensor.

The Hodge Dual of a rank three totally antisymmetric tensor mapped to a one dimensional sub-
manifold is given by [[9], equation 2.114 with p=1 and n=4]

Tp,uv = |g|_1/2 6/\puv T) (5)

where T) is a covariant 4-vector. We identify 7, with the covariant rank three torsion tensor and
T, with a torsion 4-vector, the Hodge Dual of the torsion tensor.

Rotating the A index and raising the p index results in
Tp,uv = |g|_1/2 g€ /\T/\ = |g|_1/2 E'O/u//1 T). (6)

ouy

Taking the Hodge Dual of the torsion tensor returns the 4-vector; taking the Hodge Dual again
gives the original tensor (to within a sign) as shown in the appendices to this paper.

¥y=T=1, (7
When the torsion is totally antisymmetric, the metric compatibility equation is [2,5,6,8]
r/\zy + r,ﬁv =87 (0u8vo + 0y 8oy — 05 &uv) (8)

which when combined with the definition of torsion in terms of the metric connection, [4,5,6,8]
namely,
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Tppv = Fﬁv - FpV/l )

gives
Tppv =2 rﬁv — 8" (0ugvo + 0y 8oy — O guv) . (10)

In general, we can write I, as the sum of I, the antisymmetric portion of the metric

connection and 7°

1> the symmetric portion of the metric connection [[3] equation 5], i.e.

Iy = 1y + 7y, (11)

so that substituting this into equation (8) gives

ﬂﬁv = ;—g"("(ﬁﬂgm +0y8ou— 058uy) forallp, p, v, (12)

and

TP’W =2 pr, forallp, u, v. (13)
Equation (13) demonstrates that I1¥,,, the antisymmetric portion of the metric connection, is also a
tensor, and is totally antisymmetric. Thus we can write, applying equation (7), (9), and (11)

™, =21, =21, (14)

where IT) is a 4-vector, the Hodge Dual of the antisymmetric part of the metric connection.

As mentioned earlier, it is assumed that the reader is familiar with the proofs, based on the
antisymmetry of the commutator [11], that the metric connection is antisymmetric except for

possible non-zero diagonal elements. Three diagonals exist in the metric connection, 7€, 7, and

- With 79, and T, being totally antisymmetric, 74, must vanish whenever p # u # v, so that

pp

7P, can be non-zero only when any two (or more) of the indices are identical. The only symmetric

uv

non-zero components of 74, remaining are then (no summation implied) 75, 7}

fip> My (and 7)),

pv
Le. nf), is purely diagonal.
In an earlier publication [6], the concept of “shear” of the spacetime was introduced and assumed

to be totally symmetric, with diagonal entries only, which as a result of equation (11) gives
Sy =T, + 1K, =218, (15)
Shear being totally or purely diagonal then results in the symmetric part of the connection being

totally diagonal. The shear was also shown [[6], equation 2.69] to be totally symmetric which for
this situation where only diagonal elements can be non-zero, means that

Spou = Spup = Sppp (16)
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which requires
Topu = Tpup = Mupp (17)

From equation (12), we see that ﬂﬁv is symmetric in the lower two indices and that we can form

three diagonal sums, two of which are identical. That is, for the symmetric part,
[y = Thup = Mooy = 7y Op = ;—g*’”(aﬂgpa +0p8ou — 00 8up) . (18)
Noting that [ [2] equation 3.4.7 and 3.4.9] i.e.
> ¢ 0ygpu = 0vIn(\lgl) = Ty Ing) (19)
equation (18)becomes

1
Ay =1h, = dyln Jlgl + ;gpo—(apgo-’u — 0o 8up) = Oun lgl . (20)

where we have used g7 (0, 80y — 05 84p) =0, when summed over both p and .

We also have from equation (12), collapsing the lower two indices, that

X =, 8 = ;_gpa 8" (0ugvo + 0y 8oy = Oo guv) =

1 @1
; f (g'w(a,u 8vo +0y8oy) — 0o In +|g] )
Pulling down the p, o indices, we have
1
X, = ;gyv@#gvp +0y8pu) — ;_Gpln Jlgl = g Ou&vp — ;_apln lgl - (22)
Noting equations (20) and (22), we see that
X,+ Np= g 0,8 (23)
If we let X, = A,, the assumption of total diagonal symmetry, then
1
X,= A, = ;g'“"aﬂgvpzapln Jlgl . 24)

This assumption reduces equation complexity by a significant amount. If warranted, it will be
relaxed in future publications.

So far, we have established the following, given a four dimensional spacetime with a non-
vanishing totally antisymmetric torsion, a metric that satisfies the metric compatibility equation,
and a metric connection that is antisymmetric except for the diagonals which may be non-zero, we
have that

e the torsion tensor can be represented by a vector in four dimensions. This vector is the Hodge
Dual of the torsion tensor,

e the antisymmetric portion of the metric connection is totally antisymmetric, and
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e the symmetric portion of the metric connection is assumed to be purely diagonal. This is
represented by three vectors, all assumed equal, with values given by by the derivative of a scalar.

Curvature When Torsion is Totally Antisymmetric

The rank four curvature tensor in four dimensions on the base manifold and its cyclically rotated
equivalents are given by the following [[ [5] equation 1.24 ; UFT 88, equation 2],

Ry = 0,0, = 8,1} + T, T, - T3, T, (25)

RYup = 0Ly = Ty + T3, T, =T, T, (26)
L g A A A

R Yo = 8pl"w -y l“pv + I“py I“ZN - Fw sz . (27)

Three reduced or contracted curvatures can be generated by collapsing the tensor using the upper
index and one of the lower indices. The first reduced curvature, R* ,, (the symbol x is a
placeholder only) can be derived from the curvature tensor in equation (25) by contracting it with
o

x  _ pA _ A A A A
Ry = Ry 80 = (04T, = 0,1 8+ (T T3, = T3, T, ) 4 (28)

If we interchange the dummy variables associated with the summations, we notice that the
difference T3, 7, - I}, [, in equation (28) vanishes.

Expanding this, using equation (20), we have
Ry = (aﬂ r&p —dy rﬁ/)) o =

29
Oumiy — Byl = BNy — 8y Ay = 8,0yIn /|gl — 8,0, 1n \lg] = 0. 9

Another reduced curvature is obtained by collapsing the A, p indices in equation (26), again noting
that the curvature is antisymmetric in the last two indices, we have, noting I’ }Q,ZAy, for second the

reduced curvature tensor,

RX/JV.\‘ = _RX/J.\‘V =0, Ap -0, 1/};1 + rf/ty r%,u - A)’ r?//,u : (30)

A third reduced curvature is obtained by multiplying equation (27) by 6 noting again that
Il =A,,
Ry = RY,, 08 =0\, — 0N+ Ay T, =T TY, . (31)

VXU Vpu

In the appendix it is shown that F"}y F}\’u is symmetric in ¢ and v, when the symmetric part of the

connection is totally symmetric. In this case,
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ry, 0y, + 0,1}, =2, 1%, . (32)
If we define an antisymmetric curvature by
RA = —R',,, + R, =

VI

(0yAy— 00T, + ThTY, = Ay TY,) +(0aTh, =8, Ay + A, T, —T0 T,

) (33)
then using equations (24), (29) through (32) this becomes
RA = o\ (Th, — T, )+ Ay(Th, —T%). (34)
We have, from equations (9) and (13), this is
R = @+ Ty =200 +A) T, (35)
This is the first Bianchi identity under the assumptions given in this paper.

We can also define a symmetric reduced curvature tensor RLSV) by subtracting equation (30) from

equation (31),

Ry =R+ Ry = 36)
~20,0yIn \Igl + Ay(TY, +T7,) +0, (7, +T7,) — (T}, Iy, +T, 7,)
Using the spacetime shear of equation (15), allows equation (36) to be written
Ry = Oy+Ay) S, + R (37)
where, introducing
¢ =1In /gl (38)
we have, noting equation (32)
RO ==208,0,¢ —(Ty, T}, +T4,TY,) = -28,6,6-2T}, T3, (39)

This is a symmetric reduced curvature term R{)- which contains all of the non-linear terms in the

curvature equations. This allows us to write the so-called symmetric Einstein curvature tensor for
this geometry as

R
Gur = Ry =7 8ur = By +1y) Sy = i @y +Ay) Shp 8% guv+ (REVVL) _iﬂ(NL) gw) (40)

where the scalar curvature, R, the trace of the reduced curvature from the above equation is given
by

R=REY & = (0y+Ay) Slg) g% + RO (41)

where the non-linear scalar curvature is



8 | Bridge to Einstein-1.nb

RED = RN g = — 2 rﬁy Iy, ¢ -20¢. (42)

If we neglect the non-linear curvature R and its scalar curvature R}~ g7, the Einstein curvature
tensor becomes

R
Gy = Ry = 8ur = By Ay) Sy = = By +y) S8 gy (43)
This assumption generates an independent non-linear equation given by
(R0 - Lo guv) =0 (44)

or
0u0y¢ +T%, Y, + (T4, TY, g +09) g4y = 0. (45)
The wave nature of this equation is noted, but is the subject of another paper.

General Relativity of Einstein, Cartan, Sciama , and Kibble
Einstein’s equations for general relativity [[8] equation 4.52] are for a symmetric Ricci curvature
R, given by

va - zigyv =8nG 7y = Gy (46)

where 7,,, is the Einstein stress-energy tensor and G is the gravitational constant.

Substituting equation (43) into (46) we see

Gy = (0y+A) S),Ztv N ;_((‘97"'/\7) St};ﬁ) gaﬁ 8ur = 871G 7y 47)

We note that any coupling to the torsion field has been removed by neglecting the non-linear
curvature. It should be pointed out that the assumption of zero torsion was not required.

Trautman [[12], equations 23 and 24] summarizes the Einstein, Cartan, Sciama, and Kibble
equations of general relativity, perhaps the simplest extension of Einstein’s relativity to include
torsion, as two equations, the first being the standard Einstein equation, as given by equation (46)
above, and

Tfl’w + 5ﬁ 19, + 060 TZU =8 spﬂv (48)

where £, is the spin energy density, and 7%, is the torsion tensor. For the case of a totally

antisymmetric torsion, equation (48) becomes

T, =875, (49)

If we apply the operator (9, + A,) to this equation, we have
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@Or+AD) T, =87 Br+An) £y =R (50)

which from equation (35) we recognize the antisymmetric component of curvature R). This

equation is not directly coupled to the curvature equation (47) except through the vector Aj.
Direct torsion-curvature coupling disappeared when the non-linear terms were neglected.

Discussion and Conclusions

Equations (47) and (50) provide the bridge from the general relativity of Einstein, and later,
Einstein, Cartan, Sciama and Kibble to a general geometry with torsion and curvature which is the
basis of the more general ECE general relativity. The path which leads to the ECE theory which is
based on Cartan geometry is the subject of another paper however, as is the wave nature of the
neglected non-linear curvature terms.

In this paper we have demonstrated that a totally antisymmetric torsion tensor implies that four
unique scalars completely describe the state of torsion on a four-dimensional Riemann- Cartan
manifold. These scalars are in vector form expressed by the Hodge Dual of the torsion tensor.

The metric connection was shown to consist of at most, a totally antisymmetric component and a
symmetric component consisting of only diagonal elements. The symmetric component was
summed along the diagonals to produce three one-forms of which all three were assumed equal.
This allowed the representation of the symmetric component of the metric connection in terms of a
single four-vector also.

If one generates the sum of the reduced curvature tensor and half the scalar curvature multiplied by
the metric, the resulting equation shown to reduce to the Einstein equation of general relativity.
ECE theory has assumed that constraints imposed by commutator antisymmetry meant that the
metric connection did not contain any symmetric elements. When this assumption was relaxed, it
allowed a seamless flow or bridge from the general relativity of Einstein to one containing torsion
at a level higher than a slight perturbation, such as the ECE theory. The flow to one of the earliest
torsion-curvature relativity theories as provided by Einstein, Cartan, Sciama and Kibble was also
demonstrated.




10 | Bridge to Einstein-1.nb

References

[1] M. Socolovsky, “Locally Inertial Coordinates with Totally Antisymmetric Torsion”,
ArXiv:1009.3979v2 [gr-g¢] 25 Apr 2011

[2] S. Jensen,”General Relativity with Torsion: Extending Wald’s Chapter on Curvature”,
November 16, 2005, http://www.slimy.com/~steuard/teaching/tutorials/GRtorsion.pdf

[3] Luca Fabbri, “On a Completely Antisymmetric Cartan Torsion Tensor”, ArXiv:gr-
qc/0608090v5-25 Jun 2012

[4] D. Lindstrom, H. Eckardt, M. W. Evans; “On Connections of the Anti-Symmetric and
Totally Anti-Symmetric Torsion Tensor, August 5, 2016; UFT Paper 354; freely available at
WWW.aias.us

[5] Myron Evans, Horst Eckardt (editor), Douglas Lindstrom, Stephen Crothers; “Principles of
ECE Theory, Volume I”; New Generation Publishing , www.newgeneration-publishing.com,
September 29, 2019; freely available at www.aias.us

[6] Myron Evans, Horst Eckardt (editor), Douglas Lindstrom, Stephen (Crothers, Ulrigh
Brugchbolz; “Principles of ECE Theory, Volume II”; freely available at WWwWw.aias.us,
softcover: ePubli Berlin (2017) ISBN: 978-3-7450-1957-5, hardcover: ePubli Berlin(2017) ISBN:
978-3-7450-1326-9

[7] W. A. Rodrigues Jr., “Differential Forms on Riemannian (Lorentzian) and Riemann-Cartan
Structures and Some Applications to Physics”, ArXiv: 0712.3067v6 [math-ph] 04 Dec 2000

[8] S. P. Carroll, “Spacetime and Geometry: an Introduction to General Relativity”, M.
Addison Wesley, New York, 2004, (see also 1997 notes, https://arxiv.org/abs/gr-qc/9712019).

[9] Horst Eckardt; “Einstein-Cartan-Evans Unified Field Theory - The Geometric Basis of
Physics” (2019) , available as preprint at [Paper 438] Unified Field Theory section at www.aias.us
[10] UFTS88, UFT211,UFT211, UFT315, UFT354 are freely available at www.aias.us

[I1]  See references 5,6, as well as UFT papers 131-134, 139, 141 freely available at www.aias.us

[12]  A. Trautman; “Einstein-Cartan Theory”; arXiv:gr-qc/0606062v.1 14 Jun 2006
[13] Wolfram Research, Inc., Mathematica, Version 12, Champaign, IL




