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Abstract

This series of papers on force fields generated by spacetime itself is con-
tinued by investigating a rotating spacetime. Two tetrads are constructed
that lead to metrics with diagonal and non-diagonal elements for a a rotat-
ing, spherically symmetric spacetime. The force fields are computed using
the formalism developed for a path through all stages of Cartan geome-
try. For the non-diagonal spacetime metric, an approximation had to be
defined to overcome computational problems. The resulting electric and
magnetic field polarizations represent a geometrical approach to explor-
ing both the properties of nucleons and even quarks, and the reasonable
assumption that they are the smallest building blocks of matter.

Keywords: Unified field theory; m theory; central symmetry; gravitation;
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1 Introduction

In the preceding papers [1], we investigated the spherically symmetric spacetime
of general relativity within the framework of ECE theory [2]. In particular, gen-
eral relativity was introduced using m theory [3], in which relativistic distortions
of the radial coordinate r are described by metric functions m(r).

A Cartan tetrad was constructed in such a way that the resulting metric
of a spherically symmetric spacetime includes the m function. Applying the
full formalism of ECE theory to this tetrad leads to force fields and topological
charge and current densities. These fields and densities arise from the geometry
alone. This is surprising because, in normal physics, field equations have to be
solved to obtain field solutions in a given geometry. The ECE fields are unified
fields by definition, i.e., they can be considered as electromagnetic as well as
gravitational fields, or even as quantum fields (in classical approximation).

In this paper, we consider the rotation of spherical spacetime, which is an
extension of the concept that we have used so far. A rotating spacetime corre-
sponds to a frame rotation of Cartan geometry, which has already been studied
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earlier [3]. In that book, we explored this rotation using the metric directly as
a basis, and found simple explanations for de Sitter and Lense-Thirring preces-
sions, for example. In this paper, we define tetrads for a rotating spacetime, so
that we can apply the full Cartan-ECE mechanism to find corresponding force
fields and densities. We use two approaches that are described in [3], one uses a
diagonal metric and another one uses a metric containing off-diagonal elements.
These elements complicate the mathematical treatment enormously, so that a
solution can be found only for an approximate version of the rotating spacetime.
This approximation, although rough, is good enough to allow the results to be
compared with the internal structures of elementary particles that are asserted
by the Standard Model.

2 Rotating spherically symmetric spacetime

2.1 Rotation metric with diagonal elements only

A spherically symmetric spacetime is described by spherical coordinates (r, θ, φ)
and time t. The relativistic effects are restricted to the time and radial coordi-
nate and are expressed by the m function [1,3]. The squared metric line element
is

ds2 = c2m(r)dt2 − dr2

m(r)
− r2dθ2 − r2 sin(θ)2dφ2. (1)

We assume that the frame rotates around the Z axis with a constant angu-
lar frequency ω0. Then, the azimuthal coordinate φ becomes time-dependent
(written as φ′), and is described by the differential

dφ′ = dφ+ ω0dt. (2)

The above line element then becomes

ds2 = c2m(r, t)dt2 − dr2

m(r, t)
− r2dθ2 − r2 sin(θ)2dφ′2 (3)

= c2m(r, t)dt2 − dr2

m(r, t)

− r2dθ2 − r2 sin(θ)2
(
dφ2 + 2ω0dφdt+ ω2

0dt
2
)
.

This form of the metric has an off-diagonal term, which couples the t and φ
coordinates. Using the standard relation for polar coordinates,

dφ = ω0dt, (4)

we obtain:

ds2 =
(
c2m(r, t)− 3ω2

0r
2 sin(θ)2

)
dt2 − dr2

m(r, t)
− r2 sin(θ)2dφ2. (5)

This is a diagonal metric again. We can write it in matrix form as

(gµν) =


c2m(r)− 3ω2

0r
2 sin(θ)2 0 0 0

0 − 1
m(r) 0 0

0 0 −r2 0
0 0 0 −r2 sin(θ)2

 . (6)
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As described in [1], this metric can be derived from the tetrad

(qaµ) =


1
2

√
c2m(r)− 3ω2

0r
2 sin(θ)2 0 0 0

0 1

2
√

m(r)
0 0

0 0 r
2 0

0 0 0 r sin(θ)
2

 . (7)

By applying the Cartan geometry formalism to this tetrad and metric, we obtain
the following for the force fields:

E(0) =

fr(r, θ)fθ(r, θ)
0

 , (8)

E(1) = E(2) = E(3) = 0, (9)

B(0) = B(1) = 0, (10)

B(2) =

 0
0
−A0

r0

 , (11)

B(3) =

−
A0r cos θ

r20
A0 sin θ
r0
0

 , (12)

where A0 and r0 are constants, and fr(r, θ) and fθ(r, θ) are complicated func-
tions that are not listed here, but can be seen in the computer algebra code
(available from upitec.org). This result is similar to the one in [1] for a non-
rotating metric, except that the polarization field E(0) now has an additional θ
component and depends on the rotation frequency ω0. The B fields are identical
to those without rotation [1] (only the constants have been defined differently).

The functions fr and fθ contain terms of the form√
c2m(r)− 3ω0

2r2 sin(θ)2, (13)

which in turn contain the φ component of the orbital rotation velocity at radius
r:

vφ = ω0r sin θ. (14)

As a consequence, Eq. (8) includes the relativistic γ factor

γ = c
(
c2m(r)− 3ω0

2r2 sin(θ)2
)−1/2

(15)

=

(
m(r)− 3

v2φ
c2

)−1/2
,

which also appears in the theory for a general rotating frame (see de Sitter and
Lense-Thirring precessions in Section 9.3.3 of [3]). In [3], the description of the
general rotating frame was restricted to a plane polar coordinate system, but
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contained an additional translation. This translation is not present in our case,
and the rotation is stationary with a constant angular velocity.

In the limit r → 0, we have

γ → m(0)−1/2, (16)

which defines a relation between γ and m(r). In the flat space limit m(r)=1, it
follows that γ = 1, i.e., it is the non-relativistic limit for r → 0.

The non-vanishing curls of the force fields are

∇×E(0) =

gr(r, θ)gθ(r, θ)
0

 , (17)

∇×B(2) =

−A0 cos θ
rr0 sin θ
A0

rr0
0

 , (18)

∇×B(3) =

 0
0

A0(r0−r) sin θ
rr20

 . (19)

The functions gr, gθ are complicated functions again, and they also depend on
ω0 additionally. For a non-rotating spacetime, the electric curl disappears [1],
so this is a pure effect of rotation. Remarkably, the curl of the electric field
corresponds to a current of magnetic monopoles, which follows from the Faraday
law of ECE theory (Eq. (4.73) in [3]). Therefore, the rotation produces a
monopole structure in addition to the magnetic field (which it does already
without rotation). The curls of the magnetic field polarizations are identical
to those without rotation, which are given in [1]. Similar results hold for the
non-vanishing divergence of the electric and magnetic field polarizations:

∇ ·E(0) = h(r, θ), (20)

∇ ·B(3) = A0

(
2

rr0
− 3

r20

)
cos θ (21)

with a complicated function h.
The results for the diagonal rotating metric are graphed in Figs. 1 - 8,

similarly to how they are graphed in [1]. We start with the representation of
Eqs. (8) and (17) for the electric field E(0), computed with the model m function

m(r) = 2− exp
(

log(2) exp(− r
R

)
)
, (22)

as in previous papers. In Fig. 1 we see that the electric field is directed to the
outside in the central plane θ = π/2, while it points to the center at the poles.
In the inner sphere it points to the center everywhere, indicating a central field.
The curl of the field (Fig. 2) is always parallel to the central plane and changes
direction on this plane. In the inner sphere, the direction is inverse to that in
the outer sphere.

We now compare both graphs with the results for the m function m(r)=1,
which was used for Figs. 3 and 4. The curl of E(0) is very similar to Fig. 2,
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but the field in the inner sphere of Fig. 3 is not centrally symmetric as in Fig.
1. This is the effect of the limit m(r) → 0 for r → 0. This difference becomes
even more apparent when we compare the radial component of the E field to
its divergence, which depends on r also (Figs. 5 and 6). Close to the center,
the m function leads to a pole in the electric field as well as in its divergence,
revealing a strong topological charge effect. When we use the approximation
m(r)=1, these poles disappear, and both curves are linear to the center. At the
right end of the graphs, the values of the rotation velocity vφ become so large
that we approach the ultra-relativistic limit γ → ∞. Here, the field as well
as its divergence tends to infinity. This is reminiscent of electronic orbitals in
heavy elements, where the velocity of electron waves reaches the velocity of light.
However, this situation is different to ours, because there is a high potential in
atoms and we are only considering the geometrical ramifications here.

The divergence of the electric field in the central region is depicted in Figs.
7 and 8 for both models of the m function. As explained in [1], the horizontal
plane of the images corresponds to the vertical (r, θ) plane of the sphere. The
realistic m function leads to a divergence funnel similar to a Coulomb potential,
while the function m(r)=1 only leads to a peak at the center, with some angular
variations close to it. These findings are in accordance with those shown in the
other figures.

The properties of the magnetic fields are the same as those for the non-
rotating spacetime, which have already been graphed and discussed in [1].

Figure 1: E(0), with the m(r) model
function.

Figure 2: curl(E(0)), with the m(r) model
function.
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Figure 3: E(0), with m(r)=1. Figure 4: curl(E(0)), with m(r)=1.

Figure 5: Radial functions E
(0)
r and

div(E(0)) at the equator (θ = π/2),
for the m(r) model function.

Figure 6: Radial functions E
(0)
r and

div(E(0)) at the equator (θ = π/2),
for m(r)=1.
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Figure 7: Contour plot of div(E(0)) in
the vertical (r, θ) plane for the m(r)
model function.

Figure 8: Contour plot of div(E(0)) in the
vertical (r, θ) plane for m(r)=1.

2.2 Rotation metric with non-diagonal elements

As an alternative to the diagonal metric of rotation, we will now use the metric
(3) directly, without replacing the mixed term dφdt with Eq. (4). The result is

ds2 = c2m(r, t)dt2 − dr2

m(r, t)
− r2dθ2 (23)

− r2 sin(θ)2
(
dφ2 + 2ω0dφdt+ ω2

0dt
2
)

= (c2m(r, t)− ω2
0r

2 sin(θ)2)dt2 − dr2

m(r, t)
− r2dθ2

− 2r2 sin(θ)2ω0dφdt− r2 sin(θ)2dφ2.

This metric, written in matrix form, is

(gµν) =


c2m(r)− ω2

0r
2 sin(θ)2 0 0 −2ω0r

2 sin(θ)2

0 − 1
m(r) 0 0

0 0 −r2 0
−2ω0r

2 sin(θ)2 0 0 −r2 sin(θ)2

 (24)

and contains the off-diagonal elements g03 = g30. In principle, this is the Kerr
metric of general relativity, but the Kerr metric is written in “Boyer-Lindquist
coordinates”, which results in a more complicated structure [4]. Nevertheless,
the Kerr metric has non-vanishing off-diagonal elements similar to those in
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Eq. (24). The metric of Eq. (24) can be constructed from the tetrad

(qaµ) =


1
2

√
c2m(r) + 3ω2

0r
2 sin(θ)2 0 0 0

0 − 1

2
√

m(r)
0 0

0 0 − r2 0

ω0r sin(θ) 0 0 − r sin(θ)2

 , (25)

where variations in sign are possible that give the same result (24). Applying the
Cartan geometry formalism, however, leads to an inconsistent equation system
for the Christoffel symbols (Γ connections), so that no solution is possible and
the formalism stops working at this point. It is not clear what the reason is for
this failure. Finding the cause would require a thorough mathematical analysis
of the corresponding equation system of 64 equations with 64 variables and
has been postponed. Instead, we introduce an approximation for the metric.
Results show that a solution for the non-diagonal metric is possible, when g03
and g30 are constants. Therefore, we modified these elements to

g03 = g30 = −2ω0r
2
1. (26)

This means that we assumed r ≈ r1 = const. and θ ≈ π/2 with sin θ ≈ 1, which
corresponds to a region in the spherical geometry near the equatorial plane with
a restricted radius around r1. The metric then reads

(gµν) =


c2m(r)− ω2

0r
4
1 sin(θ)2

r2 0 0 −2ω0r
2
1

0 − 1
m(r) 0 0

0 0 −r2 0
−2ω0r

2
1 0 0 −r2 sin(θ)2

 , (27)

and is derived from the modified tetrad

(qaµ) =


1
2F0 0 0 0
0 − 1

2
√

m(r)
0 0

0 0 − r2 0
ω0r

2
1

r sin(θ) 0 0 − r sin(θ)2

 (28)

with the function

F0 =

√
c2m(r) +

4ω2
0r

4
1

r2 sin(θ)2
− ω0

2r14sin (θ)
2

r2
. (29)

Please note that the tetrad matrix is not symmetric.
The resulting magnetic force fields are the same as for the static metric

and the rotational metric with only diagonal elements. Therefore, the curl and
divergence of the magnetic force fields are identical in all three cases. In contrast,
the electric force fields are non-zero for all four polarizations, and the same holds
for their curls. Concerning their divergence, only polarizations (0) and (3) have
non-vanishing values. The results for all three cases of the metric have been
compiled in Table 1, as an overview. As already mentioned, the magnetic fields,
as well as their curl and divergence values, are identical in all three cases.
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Metric Static Diagonal Off-Diagonal
m(r) var. m(r)=1 m(r) var. m(r)=1 m(r) var. m(r)=1

E(0) x - x x x x
E(1) - - - - x x
E(2) - - - - x x
E(3) - - - - x x

B(0) - - - - - -
B(1) - - - - - -
B(2) x x x x x x
B(3) x x x x x x

curl E(0) - - x x x x
curl E(1) - - - - x x
curl E(2) - - - - x x
curl E(3) - - - - x x

curl B(0) - - - - - -
curl B(1) - - - - - -
curl B(2) x x x x x x
curl B(3) x x x x x x

div E(0) x - x x x x
div E(1) - - - - - -
div E(2) - - - - - -
div E(3) - - - - x x

div B(0) - - - - - -
div B(1) - - - - - -
div B(2) - - - - - -
div B(3) x x x x x x

Table 1: Non-vanishing elements (x) of force fields and their derivatives.

In the third case, the electric field polarizations E(0) and E(3) are quite
complicated. The other two electric polarizations are

E(1) =

 0
0

− 2A0ω0r
2
1

√
m(r)

rr0

 , (30)

E(2) =

 0
0

− 2A0ω0r
2
1 cos(θ)

rr0 sin(θ)

 . (31)

These fields have only a φ component and are rotational. From Table 1, it can
be seen that all E fields display a curl, but E(0) and E(3) also diverge, so they
are partially source fields. The same applies to B(3). The curl and divergence
of the B fields have already been graphed in [1].
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3 Interpretation of the results

To further analyze the three cases of the metric, we consider the total charge
that arises from the charge densities

ρ(a) = ε0∇ ·E(a) (32)

for each polarization a. The total charge is given by the integral

Q(a) =

∫
ρ(a)d3r (33)

with the spherical volume element

d3r = r2 sin θ dr dθ dφ. (34)

The integral is not analytically solvable in most cases. Therefore, we restrict
ourselves to the simplest case, the non-rotational metric. The charge integral
gives

Q(0) = 0, (35)

but when we consider the radial integral only in a range between 0 and a spe-
cific r, we see that the value of the integral is finite across a wide range and
approaches zero only for r →∞. This is graphed by the green curve in Fig. 9.
The charge density ρ(0) (blue curve) diverges for r → 0 similarly to how it does
for a point charge, but it has positive values above a certain radius. In order
to better understand the behavior of the charge at a radius r, we have graphed
the density of a spherical shell segment

S(a)(r) = 4πr2ρ(a)(r), (36)

as the red curve in Fig. 9. This looks like a wave function or a charge distribution
of elementary particles. In an ECE paper on the parton structure of elementary
particles [5], it was shown that such structures can be created by Beltrami-like
wave functions. The red curve of Fig. 9 can be compared directly with an
experimentally obtained charge distribution of the neutron (Fig. 5 in [5]).

Fig. 10 shows the charge density integral of the field B(3), which leads to the
dipole built from magnetic monopoles as described in [1]. The radial integral
over the charge density diverges, but the angular part makes the integral to
zero, as is to be expected for dipoles.

As an example of results from the non-diagonal metric (case three), the
divergences of the fields E(0) and E(3) are graphed in Fig. 11. Obviously,
both polarizations lead to different signs for charges near the center. From
Table 1, we see that none of four electric polarizations vanish, as is also the
case for their curls. The same holds for two of the B fields. In total, there are
six non-vanishing fields and six curls. This allows us to make a connection to
the physics of elementary particles. According to the Standard Model, there
are three groups (“generations”) of quarks with six members each. The most
important group is the first group. This group contains three up and three
down quarks, which constitute the nucleons of ordinary matter (protons and
neutrons). Up quarks have a spin of 1/2 and a charge of 2/3 e, while down
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Figure 9: div(E(0)), r2div(E(0)) and
integral of div(E(0)) for a static metric.

Figure 10: div(B(3)) and integral of
div(B(3)) for a static metric.

Figure 11: div(E(0)) and div(E(3)) for a
non-diagonal rotation metric.

quarks have a spin of -1/2 and a charge of -1/3 e. The quarks do not exist
as single particles but only in combinations that give charges of 0 or ±e and
constitute the “strong nuclear force”.

All quark groups are classified by symmetry properties. This justifies the
assumption that the origin of the charge and spin of elementary particles lies
in the geometry. The rotation of a spherically symmetric spacetime creates six
basic geometrical forms that are indicated by the structure of the polarization
vectors of force fields or, alternatively, their curl vectors.

Quarks cannot be observed directly, but only through the collision of ele-
mentary particles and subsequent investigation of their decay products, which
are other particles. Therefore, it is reasonable to assume that the origin of the
charge and mass of elementary particles lies in the geometry. A single spheri-
cally symmetric spacetime cannot be split into fragments. This corresponds to
the fact that quarks cannot be observed alone.
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The Standard Model for elementary particles is phenomenological, although
it is prettied up with a bit of group theory. In contrast to this, all aspects
of the centrally symmetric spacetime of ECE theory are completely defined by
the unified field. So far, this ECE appraoch is a semiclassical model, since no
quantization has been introduced, but the essential results already compare well
with the empirical findings. Strong and weak nuclear forces are not required,
and gravitation has already been reduced to a special case of electromagnetism
in an earlier paper [6]. What is left is the electric charge, and this, the ultimate
mystery of physics, is now being shown to be an effect of rotating spacetime, or
the aether, itself.

A complete replacement of ”quarks” as the building blocks of elementary
particles would require the charge that the polarization states create to be de-
termined, and this is not possible analytically because of the complexity of the
divergence expressions. The spin of quarks is quantized; therefore, the further
development of this theory would require a form of quantization to be intro-
duced. In the ECE UFT papers, we quantized the operators in the wave equa-
tion, for example, and interpreted the tetrads as wave functions. The solutions
of the wave equation then provided the desired quantum states. In the cases dis-
cussed in this paper, the tetrads are known a priori, thus a direct quantization
of angular momentum could be possible.
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