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Abstract

The homopolar generator or Faraday disk has been considered as a
candidate device for producing energy from spacetime. In earlier studies
of the AIAS institute, three types of possible resonances have been found.
In this paper, the dynamics of mechanical and electric behavior of the
generator is further studied by simulations. The original construction has
been changed by adding an electromagnet, which realizes several kinds of
positive feedback loops. In this way, the back EMF is reduced and energy
from spacetime could be gained. If this electromagnet is operated with
saturation of the magnetic core, very high efficiencies could be possible.

Keywords: Homopolar generator, Faraday disk, unipolar generator, N-machine,
electrodynamics simulation.

1 Introduction

The homopolar generator or Faraday disk, the oldest electric motor or gener-
ator, was discovered by Michael Faraday in 1831. Machines of this kind were
in use until about 1900, when they were replaced by modern induction motors
and generators. Nevertheless, this machine has retained a nimbus of mystery,
because it does not require time-varying fields and works on the principle of
the Lorentz force, which has a life of its own in engineering. The supporting
principle is not directly obvious from Maxwell’s equations, which are the basis
of electrodynamics. However, the Lorentz force is nothing more than the trans-
formation law for moving charges, which Maxwell’s equations are based on, so
nothing cryptic is contained in the principle of homopolar induction.

In recent years, some engineers have argued that a homopolar machine can
produce unusual effects and resonances that are not explainable by classical
electrical engineering, and that even the transfer of “energy from the vacuum”
should be possible. This hint was followed up by the AIAS research group,
and they gave an explanation of the machine in the context of Einstein Cartan
Evans (ECE) theory [1, 2]. Three possible types of resonances were found in
connection with a variable rotational speed [3]. Two of them can be explained
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only by ECE theory. The third can be understood on a more classical level and
seems to be the one that is most accessible to engineering. Therefore, we took
this model as a basis for simulations, in which the mechanical aspects were also
included so that we could give an energy balance. Starting with the standard
homopolar design in Section 2, we present an extended design in Section 3,
whose simulation results are presented in Section 4. The extended design leads
to unforeseen results that allow a reduction of the back EMF and reveal a source
of excess energy. This is further discussed in Section 5.

2 The standard homopolar generator

The homopolar generator (also called a unipolar generator) consists of a spun
conducting disk in a static magnetic field. An electric field builds up between
the shaft and the rim of the disk. The voltage provided by the electric field
produces a current through the connectors, which have to be locally fixed with
respect to the lab. Relative motion between the connectors and the disk is
required for the machine to work. This all has been discussed in great detail in
the literature, see for example [4, 5].

To derive the forces and torques of the homopolar generator, we actually
have to consider two forces: the Lorentz force that induces a current, and a
counter-acting Lorentz force that is a reaction to the induced current.

Figure 1: Lorentz force and Lorentz counter force in a conductor [7].

2.1 Lorentz force

The mechanical rotation of the disk produces a current, in the tangential direc-
tion, of vector form

FL1 = q v1 ×Bm (1)

(see Fig. 1). Bm is the magnetic field through the disk, and the charge q moves
with velocity v1 in the direction tangential to disk rotation. The force creates
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an electric field

E =
FL1

q
= v1 ×Bm, (2)

which is the well-known, non-relativistic version of the electromagnetic trans-
formation law, and is equivalent to the Lorentz force.

Figure 2: Principal operation of a homopolar generator.

2.2 Induced voltage

The induced voltage along the electric field is

UH =

∫
E · d`, (3)

where d` is the infinitesimal line element along the electric field, which is present
from the axis to the rim of the disk (see Fig. 2). The vectors v1, Bm and E
are perpendicular to one another, and d` is parallel to E. Therefore, we can use
the moduli of the vector variables in all of the above equations. The velocity
depends on the radius via v1 = ωr with angular rotation frequency ω, so we
have in total:

UH =

∫ rd

0

Ed` =

∫ rd

0

vBmd` =

∫ rd

0

ωrBmd` =
1

2
ωr2

dBm (4)

with disk radius rd. We have neglected the thickness of the drive axle. According
to the Kirchhoff rule, the sum of the voltages in the circuit of Fig. 2 is

UR + UH = 0, (5)

where UH denotes the voltage created by the Lorentz force and UR is the voltage
of the load resistance (including the inner Ohmic resistance of the disk). With
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the induced current Iind, it follows that

UH = −IindR (6)

or

Iind = −UH

R
= −1

2

ωr2
dBm.

R
. (7)

The generator is idle when no current flows, i.e., when R is very high; for
example, when one of the contacts to the disk is opened.

2.3 Counter Lorentz force

As depicted in Fig. 1, the charges of the current Iind flow in a direction v2

perpendicular to v1 and give rise to a secondary Lorentz force FL2. If we con-
sider a charge element ∆q of the current, the voltage induced by this secondary
Lorentz force can be computed in the following way. This Lorentz force at a
single position in the disk is

FL2 = ∆q v2 ×Bm, (8)

where v2 is the radial transport velocity of a charge ∆q in the magnetic field Bm

that again is perpendicular to both v2 and the plane of the disk. The transport
velocity of a charge in a conductor element ∆` during a time ∆t is

v2 =
∆`

∆t
, (9)

and the charge ∆q, which is transported by the current Iind during time interval
∆t, is

∆q = Iind∆t. (10)

Multiplying both equations gives

∆q v2 = Iind∆`. (11)

Inserting this into the Lorentz force (8), we obtain

FL2 = ∆q v2 ×Bm = Iind∆`×Bm. (12)

The total Lorentz force acting on the disk then is the summation over all con-
ducting elements ∆` along the radius of the disk:

FL2,tot =

∫ rd

0

Iindd`×Bm. (13)

Since Iind is constant over a radial path and the path is perpendicular to the
magnetic field, we have for the modulus of the Lorentz force:

FL2,tot = IindBm

∫ rd

0

dr = IindrdBm. (14)
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The torque on the axis arising from the force of the induced current is also a
sum over all radial contributions:

T =

∫ rd

0

dr× FL2(r). (15)

Again, all vectors are perpendicular to one another, so we obtain

T =

∫ rd

0

drIind r Bm =
1

2
Iindr

2
dBm. (16)

After inserting Eq. (7), this becomes

T =
1

2
r2
dBm ·

(
−1

2

ωr2
dBm

R

)
= −1

4

ωr4
dB

2
m

R
. (17)

This torque is opposite to the driving torque of the generator.

2.4 Motor-generator equivalence

To operate this device as a generator, an external torque of at least the same
size as the counter torque (17) has to be applied in the opposite direction. This
approach can be reversed in the sense that, if we feed the machine with a current
I = Iind, it then delivers the torque of Eq. (17). Thus, the homopolar machine
can be operated either as a generator or a motor.

Figure 3: Design of the extended homopolar generator.

3 Extensions of the homopolar generator con-
cept

In paper 107 of the AIAS UFT series [3], the third type of resonance was derived
from a dynamic effect. In the conventional view, a Faraday disk is considered to
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have a constant magnetic field, which pervades the disk. In the design presented
in Fig. 3, an electromagnet is added to the permanent magnet. The current
produced by the machine flows through the electromagnet and provides a pos-
itive or negative feedback effect, depending on the direction of the windings.
Although it is a simple design, nobody seems to have considered this before.
The machine can be analyzed both in a static and a dynamic way. A static
analysis was given in [3] and led to resonance-like enhancements of the current
for certain rotation speeds. We will derive the dynamic behavior first and then
reduce the result to the static case.

In extending Eq. (5), we see that the sum of voltages in the circuit of Fig.
3 is

UL + UR + UH = 0, (18)

where the voltages of the inductor coil (electromagnet) and the resistance are

UL = Lİ, (19)

UR = RI. (20)

The dot denotes the time derivative of the current I. The additional magnetic
field flowing through the disk is now a dynamic quantity, denoted by BI . In
addition, we keep the static field Bm of the permanent magnet. According to
Eq. (5), the voltage through the disk is now

UH =
1

2
ωr2

d(Bm +BI). (21)

BI is a dynamic magnetic field, which for a long solenoid is given by

BI = µ0µr
N

l
I. (22)

The inductor parameters are the number of windings N , the relative permeabil-
ity of the material µr, and the length of the coil l. Instead of this, we use an
abbreviation for the physical parameters:

α = µ0µr
N

l
(23)

so that1

BI = α I. (24)

This abbreviation is appropriate, because the inductor normally is not a perfect
solenoid and Eq. (21) is not very precise. The inductance of a coil is

L = µ0µr
N2A

l
= αNA, (25)

where A is the cross section of the solenoid. α is defined similarly to the AL

value (which is used in technical documentation):

AL =
L

N2
= α

A

N
. (26)

1With µ0 = 4π · 10−7, µr = 3000, N = 30, l = 0.2m, rd = 0.075m, we obtain
α ≈ 0.57 T/A and L ≈ 0.6 H.
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The voltage induced by the solenoid then is

UL = Lİ = αNAİ. (27)

The definitions for α and L are valid for the linear range of the magnetization
curve BI(I). Eq. (18) reads

Lİ +RI +
1

2
ωr2

d(Bm +BI) = 0, (28)

and inserting expression (24) for BI gives us

Lİ + I

(
R+

1

2
ω r2

d α

)
+

1

2
ωr2

dBm = 0. (29)

The term in parenthesis next to I is an effective Ohmic resistance that we define
by

Reff := R+
1

2
ωr2

dα. (30)

Obviously, this expression can become zero and even negative. Resonance ap-
pears at Reff = 0. This condition defines the resonance frequency:

ωres := −2
R

r2
dα
, (31)

which means that α must be negative to give resonances. This is surprising at
first glance. From Eq. (23), α can only be positive, but from Eq. (24) we see
that a negative α is equivalent to a sign reversal of BI , i.e., the windings of the
electromagnet must have such a direction that BI is opposite in direction2 to
Bm.

To complete the theoretical analysis, we consider the static case. This is
defined by

İ = 0, (32)

and by means of Eq. (7) leads to the static current

Istatic = −1

2

ωr2
dBm

R+ 1
2ωr

2
dα

= −1

2

ωr2
dBm

Reff
. (33)

For the simulation of the time behavior, the time dependence of ω has to
be respected. We assume that the disk is driven by an external motor with
a constant torque β. Then, the angular velocity follows from the rotational
Newtonian law

Θω̇ = β, (34)

where Θ is the moment of inertia of all rotating parts. In analogy to Eq. (16),
we now have two counter torques, that of the static magnetic field Bm:

Tm =
1

2
Ir2

dBm, (35)

2In Eqs. (25 - 27), α must always be taken as positive to retain a positive L.
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and that of the dynamic magnetic field BI :

TI =
1

2
Ir2

dBI . (36)

The total counter torque induced by the current is

T = Tm + TI =
1

2
Ir2

d(Bm +BI) =
1

2
r2
d(BmI + αI2). (37)

For the standard homopolar generator (α = 0), I is negative so that T becomes
negative and counteracts the driving torque β. In the case of a non-zero α, the
term I2 is always positive. It should be possible to minimize the counter torque
by suitable choices of Bm and α.

The total mechanical equation of motion is

Θω̇ = β +
1

2
r2
d(BmI + αI2). (38)

Together with the electric equation (29),

Lİ + I

(
R+

1

2
ω r2

d α

)
+

1

2
ωr2

dBm = 0, (29’)

we obtain two coupled differential equations for two variables I and ω. These
equations have to be solved simultaneously by simulation.

4 Simulation results

We have carried out simulations of several variants of the homopolar generator
using the software package OpenModelica [6]. We started with the original
design shown in Fig. 2, and then investigated the additional effects resulting
from the extended version shown in Fig. 3. The parameters used for various
simulation runs are listed in Table 1. For convenience, we have used a negative
Bm so that we obtain a positive current3.

Parameter Set 1 Set 2 Set 3 Set 4

R 0.1 0.1 0.1 3.1

L 0 0.02 1.8 4.3

rd 0.1 0.1 0.1 0.1

Bm -1.0 -1.0 -1.0 -0.5

Bsat 1.0

α 0 ±0.06 −0.6 -1.1

β 0.03 0.03 0.03 0.3

Θ 0.01 0.01 0.01 0.01

Table 1: Simulation parameters (in SI units).

3As can be seen from Eqs. (38) and (29’), interchanging the signs of Bm and I leaves the
equations unchanged.
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4.1 The original homopolar generator

The original machine was simulated by solving Eqs. (38) and (29’) with α = 0:

Lİ + IR+
1

2
ωr2

dBm = 0, (39)

Θω̇ = β +
1

2
r2
dBmI. (40)

The parameters used are listed in Table 1, data set 1, using SI units.
All simulations were carried out with a constant torque β applied to the

generator axis. Results are shown in Figs. 4-6, where only the curves with
index 1 (red curves) are referring to the original homopolar generator. The
angular velocity ω increases to a constant level (Fig. 4). After a certain time,
the counter torque outperforms the driving torque so that the total torque is
zero and the angular velocity remains constant. The same happens with the
current (Fig. 5). Because of α = 0, we have R = Reff and I = Istatic.

To determine the coefficient of performance (COP), we have to consider the
input and output power. The mechanical input power is

Pm = β ω, (41)

and the output power is purely Ohmic,

PR = I2R. (42)

The COP is defined by

η =
PR

Pm
(43)

and is presented in Fig. 6. The COP approaches unity, i.e., the mechanical
input power is completely transformed into the power loss of the circuit.

4.2 The extended homopolar generator

In the next stage, we have simulated the design that includes the additional
electromagnet, which is shown in Fig. 3. There are two possibilities for directing
the magnetic field BI of the inductor: either parallel or antiparallel to the
magnetic field Bm of the permanent magnet. In our simulations, we have chosen
Bm < 0 to obtain a positive current, for convenience. As can be seen from Eq.
(24), BI is parallel to Bm, if α < 0. For α > 0, both magnetic fields are
antiparallel (see Table 2).

A positive α leads to an enhancement of the torque, as can be seen from Eq.
(38). Therefore, we denote this case as “positive feedback” in Table 2. However,
from Eq. (30) we see that this increases the effective resistance. While increas-
ing the torque gives higher output power, increasing the resistance diminishes
output power significantly. Therefore, it is not clear if this will really give a
performance boost.

In the case of a negative feedback, we have the opposite situation: for neg-
ative α, the torque TI < 0 leads to a stronger counter torque, but Reff becomes
smaller than R so this counteracts the torque effect. How the system behaves
can be decided only by inspecting the simulation results.

9



Mode α Tc TI Reff Bm, BI

Pos. feedback α > 0 Tc < 0 TI > 0 Reff > R Bm < 0, BI > 0

Neg. feedback α < 0 Tc < 0 TI < 0 Reff < R Bm < 0, BI < 0

Table 2: Feedback modes.

4.2.1 Positive torque feedback

We first consider the case where α > 0 (data set 2 in Table 1). This gives
us a positive feedback loop for the dynamic torque in the generator (see Table
2). A growing current enhances the torque so that the current becomes even
larger and the angular velocity increases further, as can be seen in Figs. 4 and
5 from the blue curves (with index 2). However, at the same time, the counter-
torque Tc increases, and the effective resistance Reff increases with the angular
frequency. In addition, the dynamic magnetic field BI counteracts the fixed
field Bm. As a result, the COP (or efficiency η) goes up to nearly 0.4 and then
slowly goes down, so that the efficiency is further reduced (see Fig. 6). The
dynamic magnetic field and the effective resistance are graphed in Fig. 7. BI is
positive and grows sub-linearly because of the counter torque. The modulus of
the total magnetic field Bm +BI is reduced. Reff increases in a linear manner.

Figure 4: Angular velocity of the
original (1) and extended (2) generator
with α > 0.

Figure 5: Current of the original (1) and
extended (2) generator with α > 0.

Figure 6: COP of the original (1)
and extended (2) generator with α > 0.

Figure 7: Magnetic field BI [T] and
effective resistance Reff [Ω] of the
extended generator with α > 0.
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4.2.2 Negative torque feedback

In the case where α < 0, the situation is quite different. Now, the counter torque
TI produces a negative feedback, leading to a stationary value of the angular
velocity (Curve 2 in Fig. 8). Because of this feedback effect, the final value of
ω is lower than for the original generator (Curve 1 in Fig. 8).

Interestingly, the COP η of the generator with a negative feedback is larger
than unity (Fig. 9). To understand this, we have to look at Eq. (29), which in
short form reads

Lİ + IReff +
1

2
ωr2

dBm = 0. (44)

The effective resistance Reff (Eq. (30)) diminishes for a negative α:

Reff = R− 1

2
ωr2

d|α|. (45)

This effect is enhanced for an increasing ω so that the effective current resistance
in the circuit is reduced and overunity can be reached. The time evolution of
Reff is graphed in Fig. 10, as well as the development of the dynamic field BI .

For data set 2 of Table 1, the homopolar generator moves into a stable state
without oscillations. From enforced oscillations we know that this is an aperiodic
limit of a damped oscillator. By changing the parameters, it is possible to bring
the machine into an oscillating state. Applying parameter set 4 of Table 1,
we obtain an oscillating behavior of the angular velocity (see Fig. 11). The
oscillation can even become negative at the start, with the disk rotating in the
opposite direction during these phases. Analyzing this behavior further, we
see that the effective resistance becomes slightly negative during these phases
(Fig. 12). The magnetic field BI oscillates in the same way, and its amplitude
becomes quite high, up to -3 T.

4.3 The extended homopolar generator with a nonlinear
magnetic core

An extremely high magnetic field amplitude of -3 T is not realistic, because
the magnetic core will become saturated before this amplitude can be reached.
Therefore, we have modified Eq. (24) so that it is restricted to the modulus of
the saturation induction Bsat:

BI = sign(αI) min(|αI|, Bsat). (46)

For this calculation, we have used parameter set 4 of Table 1. In particular, the
torque has been increased by a factor of 10, and an Ohmic resistance of 3.1 Ω
has been used, which corresponds to that of a fan heater. The simulation result
shows an oscillating behavior which converges to constant values (see Figs. 13-
14). The output power is about 5 kW, the current is about 40 A, and the system
has an asymptotic COP of about 40 (Fig. 13), which is enormous. These values
are produced by the very low effective resistance, which drops from 3.1 Ω to
0.1 Ω. The value is even negative in the initial, strongly oscillating range. A
negative resistance means that the circuit produces energy instead of consuming
energy. The electromagnetic inductor operates in saturation mode. Both can
be seen in Fig. 14.
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Figure 8: Angular velocity of the original
(1) and extended (2) homopolar generator
with α < 0.

Figure 9: COP of the extended
homopolar generator with α < 0.

Figure 10: Magnetic field BI [T] and effec-
tive resistance Reff [Ω] of the extended gen-
erator with α < 0.

Figure 11: Angular velocity of the
extended generator, third data set
with α < 0.

Figure 12: Magnetic field BI [T] and Reff

[Ω] of the extended generator, third data set
with α < 0.
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Figure 13: Current and COP of the
extended generator, fourth data set
with α < 0, BI saturated.

Figure 14: Magnetic field BI [T] and Reff

[Ω] of the extended homopolar generator,
fourth data set with α < 0, BI saturated.

Figure 15: Dependence of η and PR on
external torque β.

Figure 16: Dependence of ω and Reff on
external torque β.

Figs. 15 and 16 show various parameters that are dependent on a growing
driving torque. According to Fig. 15, the COP η grows linearly, and the output
power PR rises roughly quadratically. From Fig. 16 it can be seen that the
rotation speed ω shows no significant dependence and approaches an asymptotic
limit. The effective resistance Reff drops hyperbolically.

5 Discussion

We have shown by simulation that a design for a homopolar machine operating
at overunity should be possible. The key point is that an electromagnet was
added to the original design of the Faraday disk. A positive feedback effect can
be achieved in three ways:

1. Additional torque from the magnetic field of the electromagnet;

2. Current enhancement through the magnetic field of the electromagnet;

3. High efficiency resulting from a reduced effective resistance (even a nega-
tive resistance is possible).
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So far, no such device that operates in overunity mode has been presented
publicly. There are reports, however, that Bruce DePalma [8, 9] had exhibited
such a machine in 1986. The magnet and disk (the whole construction) were
rotated together. This is also possible with our design, which is shown in Fig.
3. It is not known if DePalma had used an additional electromagnet.

Other propositions have been discussed in internet forums [10]. Tesla seems
to have utilized a secondary magnetic field that is generated by the current flow
from the axis to the current collector of the disk. Another interesting idea is
to use a flat (“pancake”) coil instead of the electromagnet and the conducting
disk (Fig. 17). Then, the current is forced to flow in a spiraling path from the
center of the coil to the rim. Such a flat coil generates a magnetic field that
in principle has the same effect as the electromagnet of Fig. 3. Such a device
would save material and space. However, the magnetic field would be weaker
and not homogeneous. For the latter reason, it is more difficult to simulate such
a device, and a FEM calculation would be required. It is not known if DePalma
had used a similar design in his device.

Figure 17: Homopolar design with Tesla flat coil.
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