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Abstract

We discuss the special forms of the homogeneous current of ECE the-
ory, which can also explain certain parts of the technology of Nicola Tesla.
The polarization of the vacuum is the key element in this explanation.
Starting from a classical view of polarization, we extend this model by
ECE theory to obtain a resonant version of the Ampère-Maxwell law. We
demonstrate that this mechanism is able to induce non-classical behav-
ior in electromagnetism, which is then able to transfer energy from the
vacuum.

Keywords: ECE theory, ECE2 theory, electrodynamics, homogeneous current,
Tesla technology, vacuum polarization.

1 Introduction

In Part I [5] of this article series, we have analyzed the homogeneous and in-
homogeneous currents of ECE theory [1–4]. Both currents complement the
Maxwell-like equations by providing full duality. The inhomogeneous current
is the usual current of charge carriers, while the homogeneous current is in-
terpreted to have a magnetic nature and is generally assumed to be zero in
standard theory.

However, this magnetic interpretation is only half of the truth. In the ho-
mogeneous current, there are also electric polarization terms that represent a
“dual” counterpart to electric current and magnetism. This is what Tesla re-
searched throughout his life. Most of the other researchers did not understand
this kind of duality and therefore were not able to appreciate his results. Tesla
did not write scientific articles, and his patents were often cryptic. There are
very few documents that explain the nature of Tesla’s work, and even they some-
times do so in an obscure manner, so the reader often has to extract the key
scientific facts by himself. Two authors of explanatory books are Vassilatos [6]
(the second chapter therein on Tesla’s technology) and Valone [7].

∗email: mail@horst-eckardt.de

1



In this paper, we present approaches for interpreting the homogeneous cur-
rent as a structure of the classical ECE vacuum. This current is quite different
from the usual one, which consists of charge carriers.

The first approach for describing the effects of a “cold current” goes back to
2014, when we separated the classical field terms from the terms of spacetime
(spin connections) [10], and the first version of the approach that we are pre-
senting here, which uses the Ampère-Maxwell law, was developed in 2020 [11].

2 Vacuum polarization

We start by investigating several kinds of electromagnetic polarization effects.

2.1 Classical polarization and magnetization

The polarization and magnetization of matter is defined by the following equa-
tions:

D = ε0E + P, (1)

H =
1

µ0
B−M, (2)

where E is the electric field, D is dielectric displacement, and P is the elec-
tric polarization vector (which changes the total electric field into the dielectric
displacement field). In a similar way, the magnetic field H is defined using the
induction B and magnetization M. It is also possible to rewrite Maxwell’s equa-
tions to include polarization and magnetization. According to [8], the Faraday
law then reads

1

c2
∂H

∂t
+ ∇×D = 0. (3)

When polarization and magnetization depend linearly on the electric and mag-
netic fields, these equations then contain the relative permittivity and perme-
ability [8]. The homogeneous current does not appear in the classical theory.

2.2 Vacuum polarization by the homogeneous current

According to [9], we can incorporate polarization and magnetization into the
Faraday law of classical theory in vacuo, Eq. (3). After we insert D and H, this
equation becomes

1

c2

∂( 1
µ0
B−M)

∂t
+ ∇× (ε0E + P) = 0. (4)

Rearranging the terms gives

∂B

∂t
+ ∇×E = µ0

(
∂M

∂t
− c2∇×P

)
. (5)

Comparing this equation to Eq. (6) of [5], we see that it is identical to the
Faraday law of ECE theory (which contains the homogeneous current j):

∂B

∂t
+ ∇×E = cµ0j (6)
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with

j =
1

c

∂M

∂t
− c∇×P. (7)

In this derivation, it can be seen clearly that the homogeneous current, with
respect to polarization and magnetization, is equivalent to a spacetime with po-
larization and magnetization. These properties can be attributed to matter, or
to spacetime itself, if no matter is present. The latter case describes polarization
and magnetization of the vacuum. The impedance of the vacuum is

Z0 = cµ0 =

√
µ0

ε0
, (8)

and therefore Eq. (6) can also be written in the following form:

∂B

∂t
+ ∇×E = Z0j. (9)

This corroborates that j is a vacuum current. If magnetic effects are negligible,
the above equation simplifies to

∇×E = −cZ0∇×P = − 1

ε0
∇×P. (10)

One solution of this equation for E is

E = − 1

ε0
P. (11)

This can be interpreted to mean that the vacuum polarization is connected with
an electric field of the vacuum. After this equation is inserted into the definition
of polarization (1), it follows that

D = 0, (12)

which means that there is no macroscopic electric displacement.
The derivations so far have been based on the magnetization and polariza-

tion definitions of standard Maxwell theory, but we will now transition to the
definitions of ECE theory. The Faraday law of ECE theory (Eq. (25) of [5])
reads

∂B

∂t
+ ∇×E = 2

(
cκ(Λ)0B− κ(Λ) ×E

)
. (13)

Neglecting the B field, as in Eq. (10) above, we obtain

∇×E = −2κ(Λ) ×E, (14)

where κ(Λ) is the wave vector

κ(Λ) =
1

W (0)
A− ω(Λ). (15)

ω(Λ) is a spin connection vector of ECE theory, and W (0) is a fixed constant.
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We identify the vector potential A with that of the ECE vacuum (potentials
without force fields). A homogeneous current, and consequently, a vacuum
polarization, appear when A/W (0) deviates from ω(Λ).

Eq. (14) is highly similar to Eq. (10), which was derived from classical
electromagnetic theory. The difference is that in (14) the polarization effect is
controlled by the wave vector κ(Λ). This is zero if the vacuum polarization field
A behaves in the same way as the spin connection. If they differ, a detectable
E field follows from (14). The questions are whether a κ(Λ) exists that satisfies
this equation, and if it is unique.

As an example, we assume a plane wave for E. This example is quite general,
because all kinds of oscillations can be constructed with single plane waves in a
Fourier synthesis. We define

E =

E01

E02

E03

 exp (i(ωtt− k · r)) (16)

with a wave vector

k =

kXkY
kZ

 (17)

and a spatial coordinate vector

r =

XY
Z

 . (18)

ωt is a time frequency. Computer algebra gives the result that Eq. (14) is of
rank 2, i.e., one κ component can be chosen freely.

The solution leads to a complex-valued κ(Λ). If we use κ0 as a free parameter,
the real part is

Re(κ(Λ)) =

E01

E03
κ0

E02

E03
κ0

κ0

 =
1

E03

E01κ0

E02κ0

E03κ0

 , (19)

and the imaginary part is

Im(κ(Λ)) =
1

2E03

E03kX − E01kZ
E03kY − E02kZ

0

 . (20)

Obviously, the real part is parallel to the electric field (16). This means that, if
κ(Λ) is real-valued, the term κ(Λ) ×E vanishes, i.e., there is no energy transfer
through vacuum polarization. On the other hand, an imaginary part of a wave
vector describes dissipative effects, which in our case can be interpreted as an
energy transfer from the vacuum.

2.3 Energy transfer from the vacuum

What is still open is the question of how such an energy transfer can be initi-
ated. From Tesla’s experiments, we know that a sharp pulse in the potential
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is required. According to classical theory, such a pulse in the vector potential
evokes an electric field spike

E = −∂A
∂t

, (21)

but nothing else. In ECE theory, there are two equivalent representations of the
electric field by potentials1:

E = −2(
∂A

∂t
+ cω0A) and (22)

E = −2(∇φ− ωφ), (23)

with spin connections2 ω0 and ω. From equating both expressions for E, it
follows that

−∂A
∂t

+ ∇φ = −cω0A− ωφ. (24)

The left side is a sum of the classical expressions for the electric field poten-
tial3 (please notice the different signs of these expressions in the classical case).
According to Eq. (24), this sum is identical to expressions with spin connec-
tions. This means that spin connections are always there in electrodynamics,
even though the equations for the classical potentials can formally be obtained
by setting the spin connections to zero4.

If a short pulse is created in the vacuum potential A, a momentarily very
high E field is created in the form of a shock wave, and the vacuum is strongly
polarized. The spin connections of an incoming aether stream are not compatible
with this pulse, thus the laws of standard electrodynamics do not apply in this
situation; only general relativity (ECE theory) can provide a valid description.
Since the electric field is not virtual, but is instead a physical (existing) force
field, we can use the Ampère-Maxwell equation in the form where the electric
and magnetic fields are replaced by their ECE potentials. According to [11] and
Example 5.7 in [2], the Ampère-Maxwell law (neglecting scalar potential terms)
reads

∂2A

∂t2
+ c

∂ (ω0A)

∂t
=

1

ε0
J, (25)

where J is an electronic current. When we assume that the potential A and
spin connection ω0 are present, it follows that a real current is created in a
conductive medium. This could be the wire of a coil, for example. As discussed
in [2, 11], Eq. (25) can be expanded to

∂2A

∂t2
+ c

(
ω0
∂A

∂t
+
∂ω0

∂t
A

)
=

1

ε0
J, (26)

1This follows from the antisymmetry law [2].
2These are the spin connections that are responsible for the curvature and torsion forms

that make up the force fields; notice that they are different from ω0
(Λ)

and ω(Λ).
3The classical electric field is defined by E = − ∂A

∂t
−∇φ.

4The general ECE expression for the electric field (without the antisymmetry law being
applied) is E = − ∂A

∂t
−∇φ− cω0A + ωφ.
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and is then formally identical to an equation for Euler-Bernoulli resonance, but
with non-constant coefficients. These coefficients change the behavior of the
solutions completely, but resonances continue to appear. For certain choices
of ω0 and J, even analytical solutions are possible for A. As an example, we
choose an oscillating ω0 and a constant J:

ω0 = κ0 cos(βt), (27)

J = J0, (28)

with a time frequency β and constants κ0 and J0, and we restrict our considera-
tion to one dimension. Computer algebra gives us a solution for A that consists
of some complicated integrals. The leading term is

A(t) =
J0

ε0
f1(t) f2(t) (29)

with

f1(t) = t · exp

(
c κ0 sin(βt)

β

)
(30)

and

f2(t) =

∫
exp

(
−c κ0 sin (βt)

β

)
dt. (31)

The function f1 contains a linear factor of t, which leads to a self-reinforcing
resonance of A. The electric field follows from A by Eq. (21), for example. The
integral of f2 has to be determined numerically.

We continue this example with a calculation in which all constants are set
to unity and the integral in Eq. (31) is evaluated using suitable Maxima code.
In Fig. 1, the function f1, the integrand of f2, and the evaluated function f2

are graphed. f1 shows an oscillating behavior with increasing amplitude, and f2

behaves similarly, because the integrand is always positive. Consequently, the
vector potential A increases in the same way, and so does the derived electric
field E (see Fig. 2). Note that we have just shown that this type of structure
leads to an unlimited resonance in A and E.
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Figure 1: Functions (29) and (30), all constants normalized.

Figure 2: Solution of Eq. (25) and electric field (21), all constants normalized.

In this limited example, the result holds for a constant current J. In real
systems, we will obtain a feedback effect, i.e., the resonance of the A field
enlarges the current J. To demonstrate this behavior, at least in a theoretical
way, we have changed the model current in Eq. (28) to the following form:

J = J0
t

τ
(32)

with a time constant τ . Then, one part of the general solution, (30), takes the
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following form:

f1(t) =
1

2τ
· t2 · exp

(
c κ0 sin(βt)

β

)
. (33)

The general solution increases even with a factor of t2. When J is multiplied
with an additional oscillatory part, the principal increasing character of the
solution remains. In addition to this semi-analytic analysis, it is also possible
to solve Eq. (25) numerically.

3 Discussion and conclusions

In this paper, we have presented quantitative methods that describe effects of
the homogeneous current. These methods were developed in ECE theory under
the name spin connection resonance as early as 2006 [12].

The homogeneous current has been identified as a “vacuum current”, which
means that it is a flux of structures of the vacuum, and not of material par-
ticles. Therefore, the laws of thermodynamics do not apply to this current,
because these laws are valid only for material statistical ensembles. If energy
is transferred from the vacuum to material particles, then this energy has to
be replenished in the vacuum. This will take place through additional, com-
pensating vacuum currents, and possibly through the extraction of energy from
the physical (material) environment. This may cause the “cold current” effects,
where temperature decreases. If such effects seem to contradict the laws of ther-
modynamics (which state that entropy can only increase if there is no active
input of energy), then system boundaries have not been defined correctly. The
vacuum has to be included in the system under consideration. Then, energy is
conserved, as required for any closed system.

Tesla apparently succeeded in initiating energy transfer from the vacuum by
using sharp electric pulses. We have shown that this kind of transfer can be
maintained by a resonance mechanism derived from the Ampère-Maxwell law
of ECE theory. It has been proven, at least qualitatively, that a real current
can be enhanced in this way, possibly accompanied by “cold current” effects.
More precisely, the current is not “cold”, but the temperature of the apparatus
decreases due to backflow of energy into the surrounding vacuum.

The effect of drawing energy from the vacuum has already been discussed,
without presenting a quantitative mechanism, in [10]. Therein, it has been
stated:
To achieve a non-Maxwellian ECE state, none of the potentials can ever be zero,
nor can they ever become separable nor continuous. This means that the system
has to be placed in a state of potential that is either negative or positive, and
remains that way, and that the potentials become discontinuous making their
derivative multi-valued, or perhaps “near infinite”. A pulsed potential, with
extremely fast rise and collapse times, would have this property, for example.
A multivalued potential is closely connected with non-conservative fields of field
theory. Such fields can be used to extract energy by reaching the same point of
definition space on different paths. However, it is not easy to find such fields in
Nature.
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