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Derivation of O(3) Electrodynamics from
Generally Covariant Unified Field Theory

Summary. The equations of O(3) electrodynamics are derived as an example of
Evans’ generally covariant unified theory of radiated and matter fields, a theory
which is based on the equations of differential geometry and which extends Ein-
stein’s theory of general relativity to electrodynamics. The latter is therefore de-
veloped into a correctly and generally covariant sector of unified field theory, one
of the basic outcomes of which is the Evans spin field B(3) observed in the inverse
Faraday effect (magnetization by circularly or elliptically polarized electromagnetic
radiation) and in many other ways now known. Another direct result of making
electrodynamics a generally covariant field theory is that it is described in terms of
the covariant derivatives appropriate to spacetime with torsion. The electromagnetic
field is thereby recognized as the spinning of spacetime itself rather than an entity
superimposed on a frame in flat spacetime. Consequently Maxwell Heaviside field
theory is developed into a generally covariant form, one example of which is O(3)
electrodynamics. The latter can be thought of as a gauge field theory with O(3)
orthonormal space symmetry. The equations of O(3) electrodynamics are derived in
detail from the generally covariant unified field theory.

Key words: Generally covariant unified field theory, O(3) electrodynamics, Evans
spin field B(3)inverse Faraday effect.

18.1 Introduction

General relativity is in essence the geometrization of physics. The laws of
natural philosophy are derived from the theorems of geometry, a giant leap
forward in thought brought about by Hilbert and independently by Einstein in
1915, to whom the theory of general relativity is attributed [1]–[2]. Einstein’s
original theory was developed for the gravitational field and resulted in the
Einstein field equation. In its most condensed form the latter is:

R = −kT (18.1)

where R is scalar curvature, k the Einstein constant and T the index con-
tracted canonical energy-momentum tensor. The left hand side is geometry,
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the right hand side is physics. In logic therefore, such an equation applies
for all radiated and matter fields, not only gravitation. This logical outcome
of the 1915 Eq. (18.1) was finally achieved in 2003 by Evans [3]–[16] and is
a generally covariant unified field theory based on differential geometry. In
Section 18.2 of this paper the relevant equations of differential geometry are
summarized, equations from which the whole of theoretical physics can be
derived logically, given Eq. (18.1). In Section 18.3 the theory is used to derive
in detail the equations of O(3) electrodynamics, and to infer the existence of
the Evans spin field [17] B(3), which has turned out to be the key to field uni-
fication sought after by Einstein for forty years (1915 to the mid fifties). The
Evans spin field is observed experimentally in numerous ways now known [16],
for example in the inverse Faraday effect [18], the magnetization of matter by
circularly polarized electromagnetic radiation, and in the whole of physical
optics via the Evans phase law. The latter encompasses both the dynamical
and the geometrical phase and produces the correctly and generally covariant
Berry phase [3]–[16]in unified field matter theory

18.2 The Fundamental Geometrical Equations of the
Unified Field Matter Theory

The theory has been developed in comprehensive detail elsewhere [3]–[18].
It is the purpose of this Section to conveniently summarize the equations
of differential geometry upon which the field matter theory is built. These
equations therefore define the fundamental structure of the theory and provide
the guidelines for the development of any generally covariant theory of physics,
i.e. any field matter theory, classical or quantum, provided one accepts the
axioms of general relativity encapsulated in Eq. (18.1).

Adopting the condensed but well known notation [2] of contemporary
differential geometry the four equations of differential geometry from which
the unified field theory is developed are as follows:

D ∧ V a := d ∧ V a + ωa
b ∧ V b (18.2)

Dqa = 0 (18.3)
τ c = D ∧ qc (18.4)

Ra
b = D ∧ qa

b . (18.5)

These equations define the fundamental properties of any non-Euclidean
spacetime with both curvature and torsion in terms of differential forms. Eq.
(18.2) defines the covariant exterior derivative of any vector V a, where ωa

b is
the spin connection and where d∧ denotes the ordinary exterior derivative [2]
of differential geometry. Eq. (18.3) is the tetrad postulate, which asserts that
the ordinary (as distinct for the exterior) covariant derivative of the vector
valued tetrad one form vanishes for any spacetime. The covariant ordinary
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derivative is therefore denoted by D and the covariant exterior derivative by
D∧ where ∧ is the wedge operator [2]. Eqs. (18.4) and (18.5) are the first and
second Maurer Cartan structure relations [2], defining respectively the torsion
(τ c) and Riemann or curvature (Ra

b) forms in terms of the tetrad and spin
connection respectively.

These four equations are inter-connected in free space by the recently
inferred and fundamental first and second Evans duality equations of differ-
ential geometry [3]–[17]:

ωa
b = −κεabcq

c (18.6)

Ra
b = −κεabcτ

c (18.7)

where κ is wave-number. The novel Evans duality equations were inferred in
free space from the fact that the torsion and Riemann forms are both anti-
symmetric in their base manifold indices µ and ν, so that one must be the
dual of the other in the orthonormal space of the tetrad [2]:

Ra
bµν = −κεabcτ

c
µν (18.8)

where:
εabc = ηdaε

d
bc. (18.9)

Here εabc is the Levi Civita symbol (totally anti-symmetric third rank unit
tensor) and where ηda is the metric in this orthonormal (orthogonal and nor-
malized [2]) space. The torsion form, a vector valued two form with index
c, is therefore dual to the curvature or Riemann form, a tensor valued two
form anti-symmetric in its a, b indices [2]. Using the Maurer Cartan structure
relations it is therefore inferred that the tetrad is dual to the spin connection,
the second Evans duality equation (18.6).

The well known tetrad postulate has been developed [3]–[17] into the
fundamentally important Evans Lemma (or subsidiary proposition) of differ-
ential geometry:

�qa = Rqa (18.10)

which gives the Evans wave equation using Eq. (18.1):

(� + kT ) qa = 0 (18.11)

Eq. (18.11) unifies general relativity and quantum mechanics, making the lat-
ter a causal theory of physics and rendering the Copenhagen interpretation
of the wave function unnecessary. The Evans wave equation is the generally
covariant development of all the well known wave equations of physics, for
example the Dirac equation. In well defined limits the Evans wave equation
reduces to the generally covariant form of the Proca equation, indicating con-
clusively that the photon must have a non-zero mass.

The scalar curvature appearing in Eq. (18.10) may always be defined
from dimensionality as the square of a wave-number:
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R := κ2 (18.12)

and in the limit of special relativity (a free particle translating with constant
velocity), this wave-number becomes the Compton wave-number of any par-
ticle (including the neutrino and photon, which must both have finite mass
m):

κc =
2π
λc

= 2π
mc

~
. (18.13)

Here ~ is the Planck constant, and c the speed of light in vacuo. The well
known and observed Compton wave-number (or wavelength) of any particle
is therefore recognized for the first time to be the Evans least curvature [3]–[17]
that defines mass.

These are therefore the equations of geometry, specifically the equations
of differential geometry, from which all the known equations of physics may
be derived, and new equations and fundamental properties such as the Evans
spin field B(3), inferred.

18.3 The Equations of O(3) Electrodynamics

The field theory of O(3) electrodynamics [3]–[18] is a special case of Evans’
generally covariant unified field theory outlined in Section 18.2 and has been
extensively tested against experimental data [19]. It has numerous known
advantages [3]–[18]over the older Maxwell Heaviside field theory, and produces
novel properties of physics such as the Evans spin field B(3) , now known
to be a fundamental spin invariant of the Einstein group missing from the
original 1915 theory because the latter is confined to spacetimes with zero
torsion form [2] (Christoffel symbols symmetric in the lower two indices and
Riemann geometry). The electrodynamical sector of Evans’ unified field theory
recognizes the potential field of electrodynamics to be [3]–[18]:

Aa = A(0)qa (18.14)

where A(0) is a fundamental scalar, negative under charge conjugation sym-
metry (Ĉ) and with the units of tesla m. The origin of the scalar A(0) is the
universal constant ~/e, the magnetic fluxon, with units of magnetic flux (we-
ber = volts). Here ~ is the reduced Planck constant (h/(2π)) and e the charge
on the proton. (The charge on the electron is −e).

The generally covariant magnetic field in Evans’ generally covariant
unified field theory [3]–[18] must always be defined by:

F a = D ∧Aa (18.15)

and has the units of tesla = weber m−2. The reason for this is that the
covariant exterior derivative is always needed [2] in differential geometry for
arbitrary spacetimes with in general non-zero torsion form and Riemann form.
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So it is seen that differential geometry guides us towards the generally covari-
ant definition of the magnetic field, (and also the electric field), and as we
shall see, gives us the correct and generally covariant field equations of elec-
trodynamics. The Maxwell Heaviside field theory, although well known, is not
a correct theory of general relativity because it uses ordinary derivatives in
a flat spacetime (zero Riemann and torsion forms).We have seen in Section
18.2 that the torsion form is sometimes the dual of the Riemann form for all
spacetimes, (the second Evans duality equation (18.7) of differential geome-
try), so the existence of the Riemann form sometimes implies the existence
of the torsion form. In other words curvature implies torsion. It is therefore
seen that Einstein’s omission of the torsion form is geometrically incorrect,
and this explains why he was never able to develop a unified field theory. The
contemporary ”standard model” is not a theory of general relativity, and is
therefore not correctly covariant, because within the standard model, a flat
spacetime is used for three sectors out of four (electrodynamical, weak and
strong fields). Unsurprisingly therefore , the standard model is unable to ac-
count for the fundamental and generally covariant Evans spin field B(3), now
known to be observable in many ways [3]–[18]. Contemporary string theory is
a mathematical construct (i.e. string theory is not a theory of physics, it is a
construct of mathematics that uses several unphysical ”dimensions”) and for
this reason can make no predictions about nature. In other words string the-
ory is an obscure and elaborate mathematical way of trying to describe things
that are already known in physics, and already describable more simply with
already known theories of physics. For this reason string theory is not capable
of predicting anything new in physics, and is not a unified field theory. String
theory may be interesting for pure mathematics, but the correct geometrical
basis for physics is now well known to be the Evans field matter theory [3]–
[18], whose origins in differential geometry are summarized briefly in Section
18.2. The Evans theory uses only the four physical dimensions: time and three
space dimensions. These are used as in standard relativity to construct four
dimensional spacetime. For this reason the Evans theory is a powerful and
predictive theory of nature which also reduces to the known equations of both
classical and quantum physics [3]–[18].

From Eqs. (18.4) and (18.6):

F a = d ∧Aa +
κ

A(0)
Ab ∧Ac. (18.16)

Defining:
g :=

κ

A(0)
(18.17)

we obtain the magnetic field in general relativity:

F a = D ∧Aa = d ∧Aa + gAb ∧Ac. (18.18)

The electric field in general relativity is similarly defined with appropriate in-
dices. The precise way of doing this in O(3) electrodynamics is developed later
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in this Section. The field theory of O(3) electrodynamics [3]–[18] is defined
by:

a, b, c = (1), (2), (3) (18.19)

so that:

B(3)∗ = ∇×A(3)* − igA(1) ×A(2)

et cyclicum.
(18.20)

Here (1), (2) and (3) are the indices of the complex circular basis with O(3)
group symmetry, whose three complex unit vectors, e(1), e(2) and e(3), are
cyclically inter-related:

e(1) × e(2) = ie(3)∗

et cyclicum
(18.21)

and related to the Cartesian i, j and k by:

e(1) = e(2)∗ =
1√
2

(i− ij) (18.22)

e(3) = k. (18.23)

The inverse Faraday effect is then defined in general relativity by the
magnetization:

M (3)∗ =
1
µ0

g
′

g
B(3)∗ =

−i
µ0
g
′
A(1) ×A(2) (18.24)

where µ0 is the permeability in vacuo and g
′

a coefficient in units of e/~,
the inverse fluxon. Therefore the inverse Faraday effect (magnetization by
circularly or elliptically polarized electromagnetic radiation) observes B(3)

directly and is the magnetization of matter due to B(3), as originally inferred
by Evans in Dec. 1991 [17].

The correct homogeneous and inhomogeneous field equations of elec-
trodynamics are found from Evans’ generally covariant unified field theory by
using the guidelines of differential geometry. The inhomogeneous field equation
of generally covariant electrodynamics follows from the first Maurer Cartan
structure relation (18.4) and is the fundamental Bianchi identity of differential
geometry for spacetimes with both torsion and curvature [2]:

D ∧ τa := Ra
b ∧ qb. (18.25)

Using the second Evans duality equation, Eq. (18.25) becomes:

D ∧ τa := −κεabcτ
c ∧ qb. (18.26)
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Therefore the inhomogeneous field equation is a differential equation in the
torsion form and can be solved analytically or numerically for any given sit-
uation in electrical and electronic engineering. Using Eq. (18.15), Eq. (18.26)
becomes:

D ∧ F a =
−κ
A(0)

εabcB
c ∧Ab (18.27)

i.e.
D ∧ F a = gεabcA

b ∧Bc. (18.28)

Eq. (18.28) replaces the familiar inhomogeneous field equation of Maxwell
Heaviside field theory [19], and so replaces the Coulomb Law and the Ampere
Maxwell Law.

The correct homogeneous field equation of electrodynamics is found
from the following identity of differential geometry:

d ∧ τa := Ra
b ∧ qb − ωa

b ∧ τ b = 0 (18.29)

where:
τ̃a

ρσ =
1
2
ερσµντ

aµν (18.30)

is the dual of the torsion form in the base manifold. Using Eq. (18.15) the ho-
mogeneous field equation of generally covariant electrodynamics is therefore:

d ∧ F a ∼ 0 (18.31)

and can again be solved analytically or numerically for any spacetime. The
homogeneous equation (18.28) and the inhomogeneous equation (18.31) must
be solved simultaneously for quantities of interest in practical electrical and
electronic engineering, but this should be easily possible with contemporary
software and hardware. Eq. (18.31) replaces the familiar homogeneous field
equation of Maxwell Heaviside field theory and therefore replaces the Gauss
Law and the Faraday Law of induction. Eq. (18.31) is an identity obeyed by
any anti-symmetric tensor such as the torsion tensor, which in differential
geometry becomes the vector valued torsion two form (vector valued because
of the single index c, two form because of the two indices µ and ν, indicating
an anti-symmetric tensor for each c [2]). In the older Maxwell Heaviside field
theory the c index is missing and the electromagnetic field tensor is not recog-
nized as a torsion form dual to the curvature or Riemann form. The reason
for this is that the Maxwell Heaviside field theory is the archetypical the-
ory of special relativity (flat spacetime) and historically preceded (circa 1900
to1905) the theory of general relativity (1915) (Riemann or curved spacetime
but torsion form incorrectly omitted). It was first shown by Evans in 2003 [3]–
[18] that field unification occurs correctly only in a spacetime with non-zero
curvature correctly dual to non-zero torsion through the fundamental Evans
duality equations (18.6) and (18.7) of differential geometry.

It follows that the correct equation of charge current density (Ja)in
generally covariant electrodynamics is found from the right hand side of Eq.
(18.28):
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d ∧ F a = µ0j
a (18.32)

From Eq. (18.31) it is seen that there are no physical magnetic monopoles in
Evans’ generally covariant unified field theory. The basic reason for this is that
the covariant derivative of the dual of the torsion form is identically zero - a
geometrical theorem obeyed in all spacetimes. There are, however, observable
topological magnetic monopoles given by the covariant derivative [3]–[18].
These originate again in the fact that spacetime in general has curvature and
torsion from differential geometry.

Having summarized the basic concepts the rest of this Section illus-
trates in detail the derivation of O(3) electrodynamics [3]–[18], which is now
known to be an example of the more general Evans unified field theory.

From Eq. (18.15) it is seen that the following generally covariant gauge
field is part of the general definition of gauge field:

Gc
µν = G(0)

(
qa

µq
b
ν − qa

νq
b
µ

)
. (18.33)

Here G(0) is a scaling factor and qa
µ and qb

ν are tetrads. The magnetic field
components from Eq (18.33) are:

Bc
ij = B(0)

(
qa

iq
b
j − qa

jq
b
i

)
,

i, j, k = 1, 2, 3
(18.34)

and the electric field components are:

Ec
0i = E(0)

(
qa

0q
b
i − qa

iq
b
0

)
. (18.35)

In the complex circular basis these equations become:

B
(1)∗

ij = −iB(0)
(
q
(2)

iq
(3)

j − q
(2)

jq
(3)

i

)
(18.36)

B
(2)∗

ij = −iB(0)
(
q
(3)

iq
(1)

j − q
(3)

jq
(1)

i

)
(18.37)

B
(3)∗

ij = −iB(0)
(
q
(1)

iq
(2)

j − q
(1)

jq
(2)

i

)
(18.38)

E
(1)∗

0i = −iE(0)
(
q
(0)

0q
(2)

i − q
(0)

iq
(2)

0

)
(18.39)

E
(2)∗

0i = iE(0)
(
q
(0)

0q
(1)

i − q
(0)

iq
(1)

0

)
(18.40)

E
(3)∗

0i = −iE(0)
(
q
(0)

0q
(3)

i − q
(0)

iq
(3)

0

)
. (18.41)

The tetrad is defined by the Evans wave equation for the electromagnetic
potential field:

(� + kT )Aa
µ = 0. (18.42)

The tetrad components appropriate to circularly polarized electromagnetic
radiation uninfluenced by gravitation are as follows:
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q
(1)

1 = −q(1)x = −ieiφ/
√

2, (18.43)

q
(1)

2 = −q(1)y = −ieiφ/
√

2, (18.44)

q
(2)

1 = −q(2)x = ieiφ/
√

2, (18.45)

q
(2)

2 = −q(2)y = −ieiφ/
√

2, (18.46)

q
(0)

0 = −q(3)z = 1. (18.47)

The electric field components are therefore defined by:

E
(2)

01 = E
(1)∗

01 = −iE(0)q
(0)

0q
(2)

1

= −E(2)
1 = E

(2)
x = E(0)e−iφ/

√
2,

E
(2)

02 = E
(1)∗

02 = −iE(0)q
(0)

0q
(2)

2

= −E(2)
2 = E

(2)
y = iE(0)e−iφ/

√
2,

E
(1)

01 = E
(2)∗

01 = iE(0)q
(0)

0q
(1)

1

= −E(1)
1 = E

(1)
x = E(0)eiφ/

√
2,

E
(1)

02 = E
(2)∗

02 = iE(0)q
(0)

0q
(1)

2

= −E(1)
2 = E

(1)
y = −iE(0)eiφ/

√
2,

E
(3)

03 = −iE(0) = −E(3)
3 = E

(3)
z ,

(18.48)

i.e

E
(2)

01 = −E(2)
1

E
(2)

02 = −E(2)
2

E
(1)

01 = −E(1)
1

E
(1)

02 = −E(1)
2

E
(3)

03 = −E(3)
3 .

(18.49)

and the magnetic field components by:
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B
(3)∗

12 = B
(3)

12 = B
(3)

z = −B(3)
3

= −iB(0)
(
q
(1)

1q
(2)

2 − q
(1)

2q
(2)

1

)
= B(0),

B
(1)∗

23 = B
(2)

23 = B
(2)

x = −B(2)
1

= −iB(0)
(
q
(2)

2q
(3)

3 − q
(2)

3q
(3)

2

)
= −iB(0)e−iφ/

√
2,

B
(1)∗

31 = B
(2)

31 = −B(2)
y = B

(2)
2

= −iB(0)
(
q
(2)

3q
(3)

1 − q
(2)

1q
(3)

3

)
= −B(0)e−iφ/

√
2,

B
(1)∗

13 = B
(2)

13 = B
(2)

y = −B(2)
2

= −iB(0)
(
q
(2)

1q
(3)

3 − q
(2)

3q
(3)

1

)
= B(0)e−iφ/

√
2,

B
(1)∗

32 = B
(2)

32 = −B(2)
x = B

(2)
1

= −iB(0)
(
q
(2)

3q
(3)

2 − q
(2)

2q
(3)

3

)
= iB(0)e−iφ/

√
2,

(18.50)

i.e.

B
(3)

12 = −B(3)
21 = −B(3)

3 ,

B
(2)

23 = −B(2)
32 = −B(2)

1 ,

B
(2)

13 = −B(2)
31 = −B(2)

2 ,

(18.51)

and

B
(1)

i = −1
2
εijkB

(1)
jk ,

B
(2)

i = −1
2
εijkB

(2)
jk ,

B
(3)

i = −1
2
εijkB

(3)
jk .

(18.52)

There are three sets of equations which give the correctly covariant
form of the familiar Maxwell Heaviside field equations, to which we refer
now only because of historical context. In other words the Maxwell Heaviside
field equations must be regarded now as particular special cases of the more
general Evans field equations defined as follows. The equations of index (1)
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are deduced from the particular geometrical relations implied by using the
complex circular basis:

B(1) = i
E(1)

c
,

E(1) = −icB(1).

(18.53)

The duality relations (18.53) are obeyed by the following set of index (1)
equations:

∇ ·B(1) = 0, ∇ ·E(1) = 0,

∂B(1)

∂t
+ ∇×E(1) = 0,

∇×B(1) − 1
c2
∂E(1)

∂t
= 0.

(18.54)

These are the O(3) electrodynamical field equations of index (1) [3]–[18]. The
electric and magnetic fields for index (1) can be expressed as the well known
transverse plane waves

E(1) = E(0) (i− ij) eiφ/
√

2,

B(1) = B(0) (ii + j) eiφ/
√

2.
(18.55)

From elementary vector analysis:

∂B(1)

∂t
= −ωB(0) (i− ij) eiφ/

√
2, (18.56)

and the curl is defined as:

∇×E(1) =
E(0)

√
2

∣∣∣∣∣∣∣∣∣
i j k

∂
∂X

∂
∂Y

∂
∂Z

eiφ −ieiφ 0

∣∣∣∣∣∣∣∣∣
= κE(0) (i− ij) eiφ/

√
2.

(18.57)

This verifies eq. (18.54).
Similarly:

∂E(1)

∂t
= ωE(0) (ii + j) eiφ/

√
2 (18.58)

and

∇×B(1) =
B(0)

√
2

∣∣∣∣∣∣∣∣∣
i j k

∂
∂X

∂
∂Y

∂
∂Z

ieiφ eiφ 0

∣∣∣∣∣∣∣∣∣
= ωE(0) (ii + j) eiφ/

(√
2c2
) (18.59)
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thus verifying Eq. (18.54).
The O(3) field equations of index (2) are built up from the geometrical

duality:

B(2) = −iE
(2)

c
,

E(2) = icB(2),

(18.60)

which obey the O(3) electrodynamical field equations of index (2):

∇ ·B(2) = 0, ∇ ·E(2) = 0,

∂B(2)

∂t
+ ∇×E(2) = 0,

∇×B(2) − 1
c2
∂E(2)

∂t
= 0.

(18.61)

The electric and magnetic fields form Eqs. (18.61) are found to be the plane
waves:

E(2) = E(0) (i + ij) e−iφ/
√

2,

B(2) = B(0) (−ii + j) e−iφ/
√

2.
(18.62)

These are complex conjugates of the plane waves (18.55).
From elementary vector analysis:

∂B(2)

∂t
= ωB(0) (−i− ij) e−iφ/

√
2 (18.63)

and the curl is:

∇×E(2) =
E(0)

√
2

∣∣∣∣∣∣∣∣∣
i j k

∂
∂X

∂
∂Y

∂
∂Z

e−iφ ie−iφ 0

∣∣∣∣∣∣∣∣∣
= κE(0) (i + ij) e−iφ/

√
2

(18.64)

thus verifying Eq. (18.61). Similarly

∂E(2)

∂t
= −iωE(0) (i + ij) e−iφ/

√
2 (18.65)

and

∇×B(2) =
B(0)

√
2

∣∣∣∣∣∣∣∣∣
i j k

∂
∂X

∂
∂Y

∂
∂Z

−ie−iφ e−iφ 0

∣∣∣∣∣∣∣∣∣
= κB(0) (−ii + j) e−iφ/

√
2

(18.66)
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thus verifying Eq. (18.61).
The field equations of index (3) are fond from the geometrical duality:

B(3) = i
E(3)

c
,

E(3) = −icB(3),

(18.67)

and are:

∇ ·B(3) = 0, ∇ ·E(3) = 0,

∂B(3)

∂t
+ ∇×E(3) = 0,

∇×B(3) − 1
c2
∂E(3)

∂t
= 0.

(18.68)

The fields for index (3) are missing entirely from Maxwell Heaviside field
theory (spacetime with no torsion) and are the fundamental spin fields of
general relativity (spacetime with torsion):

B(3) = B(0)k,

E(3) = −icB(3),

Re
(
E(3)

)
= 0.

(18.69)

These duality relations, field equations and fields of O(3) electrodynamics
all follow from the fundamental definition (18.32), which is part of the more
general definition (18.18).

The older Maxwell Heaviside field equations have the structure of Eq.
(18.54), (18.61) and (18.68) but there are no indices (1), (2) and (3), and no
spin field B(3). The fundamental reason for this is now known to be the fact
that the Maxwell Heaviside field theory is not correctly (i.e. generally ) co-
variant. The Evans field theory is correctly covariant and is also a unified field
theory which contains much more information about for example electricity
and magnetism or electronics, computing and communications devices than
the older Maxwell Heaviside field theory. From the Bianchi identity (18.25)
and the Evans duality equations, it is clear that the Evans theory also contains
information about the way in which electromagnetism influences gravitation,
and this information is of importance in space propulsion engineering for ex-
ample. Another example of the practical usefulness of the Evans theory stems
from the fact that the Evans theory shwons that the electromagnetic field is
a property of spacetime torsion. So in theory, it is possible to obtain energy
from spacetime with torsion, an exceedingly important goal of energy engi-
neering [20]. Historically, the Evans field theory was gradually inferred from
the Evans spin field B(3), which was in turn inferred from the experimental
inverse Faraday effect.
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