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ABSTRACT

The commutator equation, metric compatibility equation and Evans identity are
used to derive straightforwardly a metric for solar system orbits. One solution for the metric is
shown to have a closely similar r dependence to the empirical metric incorrectly known as the
Schwarzschild metric, In general the metric is valid for spherically symmetric spacetime for

any observed orbit, thus forging a new cosmology without the use of dark matter.
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1. INTRODUCTION



Recently in this series anapcrs {1 <10} the fundamental theorem of
Riemann geometry has been shown to be one based on an antisymmetric Christoffel
connection. The fundamental theorem is the equation that derives the antisymmetric
connection from the metric. In Section 2 it is shown that the metric must be redefined
fundamentally for dimensional self consistency, the metric in the standard physics {11} is il
delined, so there are dimensional problems in the definition of the various connections. The
new definition of the metric is self consistent and free of dimensional irregularities. In
Section 3 It is shown that for a static metric (one independent of time), there is only one
antisvymmetric connection, a major step forward in the understanding of cosmology. This
single connection must obey the Evans identity relating torsion and curvature, and this allows
it to be deduced analytica;lly. In Section 4 a computational and graphical analysis of the new
metric is given, and it is shown that various solutions are possible, on of which is closely
similar to the empirical attempt at understanding solar system orbits known misleadingly and

incorrectly as the Schwarzschild metric.

2. SELF CONSISTENT DEFINITION OF THE METRIC
With reference to note 189(1) accompanying this paper on www.aias.us,
consider firstly the three dimensional Euclidean space {12]. Its metric elements are habitually

defined as:
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where ris the radial coordinate. so the habitual definition of the metric is:
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In the Cartesian representation on the other hand:
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1L is not consistent to have two different metrics representing the same mathematical space.
and the presence of v causes dimensional self inconsistency because v has the units of
square metres and the othe-r metric elements in ( 3 ) are unitless. In consequence of the use
of the habitual definition 3 ) extended to four dimensional Minkowski spacetime, some
Christoffel symbols of the so called Schwarzschild metric do not vanish in a flat spacetime, in
which all connections must be zero. This is a self contradiction that has gone uncorrected for
a century.

The self inconsistency is eliminated by using the definition of the metric in terms

: of a curvilinear coordinate system, for example:
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fior o diagonal metric. So in both the Cartesian and cylindrical polar system, or any system of

coordinates, the metric is always the unit diagonal and dimensionally self consistent:
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The Minkowski metric in any coordinate system is also coordinate free in the manner of



Cartan's geometry:
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In consequence there is only one antisymmetric connection in the spherically symmetric
spacetime, a discovery of the utmost import. This connection is:
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and is constrained by the Evans identity {1 - 10}
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In the habitually self inconsistent system the Minkowski metric was sometimes

written in ¢vlindrical polar coordinates as: "\
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which is dimensionally incorrect and also contains the error:

X‘S - (Sl'h.g ’_’(\))

()



The correct expression for the third scale factor of the cylindrical polar system is well known
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112} and should be:
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The fundamental theorem of Riemann geometry for a diagonal metric of type ( ?
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where there is no summation over the repeated /A index. The only connection that need be

considered is o - ( [5)
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[he torsion tensor is twice the connection:
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From Egs. ( 10 ) and ( '5]:
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so lhe Evans identity for the single connection ( ‘S ) reduces o
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I'he curvature tensor is defined {1 - 11} as:
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and is known as the Riemann tensor, although it was not derived by Riemann because the
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idea of the geometrical connection was not known to Riemann. The connection was first

inferred by ChristofTel in about 1867. The relevant curvature tensor is: \

Therefore: & o
’ ~ M"’n J"rl°ra"—(39
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which is a differential equation for m.

Lise the change of variable:
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where & is a function of r, produces:
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The reduced equation {13, 14] of Eq. (35 ) is:
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The solution of the reduced equation ( .;L ) is the complementary function, and for

dimensional correciness the complementary function must be:
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where R is a universal constant in units of metres. Therefore the complementary function is:
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and may be positive or negative valued. The particular integral of Eq. ( 35 ) is by definition
the same as the particular integral of Eq. ( ?)5 ). The general solution of Eq. ( 33 ) is the
sum of the particular integral and the complementary function |13, 14}. The general solution
must be compared with experimental data in the solar system, these data are the orbits of
planets. meteorites, and so forth, known to be precessing ellipses to an excellent

approximation. In order to describe these data the following general sotutmn is obtained:
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i which the particular integral is:
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and in which the complementary function is:
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From purely empirical considerations it is known that a metrical function of the
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produces solar system orbits very accurately. Here:
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where G 1s Newton's constant, M the mass of the sun and ¢ the universal constant known as
the vacuum speed of light. In the next section it is shown that the correctly deduced metrical
function (3 6\5
can be approximated accurately by metric ( ‘-\-a ). The metric ( 50\ ) is the first
metric in cosmology that has been correctly derived from geometry. It is well known || - 10}
that the older Einsteinian attempts incorrectly discarded torsion and for this reason are

meaningless.
4. COMPUTATIONAL ANALYSIS Of THE METRICAL FUNCTION.
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