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4 Numerical analysis of various orbital force laws

The force laws for the orbitals described in section 2 have been evaluated by
computer. The general procedure was as follows:

1. define the orbit r(0),

2. compute the terms d%% and its second derivative,

3. substitute these terms in Eq.(3),

4. replace the occurences of the 6 variable in E.(3) by r by using the definition
of r(6).
This worked in nearly all cases. The results are valid for the spin connection of
the form )
=—= 29
w=—: (29
(see Eq.(2)) and similar for all orbits except for the binary pulsar.

Solar system

First we investigate the precessing ellipse given by
!
=— 30
"T 11 ccos (x 0) (30)
The resulting force is
((((662 — c) ty + 2a) r? —2a%r + azctf) 2?2 4+2a%r —a? ctf) L?

F=- 5
2a2mr? (r —cty)

(31)
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The curve F(r) is shown for different values of the cosmological parameter ¢
in Fig. 1. It can be seen that the occurence of this parameter shifts the force
center from r = 0 to finite values of r. In Fig. 2 this curve is plotted for ¢t; = 0.6
in a small radius range. There is a pole of F(r). The parameters are chosen as
specified in the figure captions. The question is which values of ¢; are realistic
in case of the solar system. We chose the parameters for the earth orbit as

m = 5.9742 - 10* kg,
L =2.663-10%%kg m?,

o = 1.4960 - 10" m, (32)
r=1,
e = 0.0167.

Fig. 3 shows the resulting absolute values of the gravitational force for various
values of ty. It has to be noted that ¢ ¢; is the way that light travels in ¢
seconds. Since the Newtonian force law works relatively precisely in the solar
system, we can assume that the singularity produced at the sphere with radius
c ty is positioned in the interior of the sun which has a radius of 6.955 - 108m.
Therefore we can estimate

ctp < 6.955-10%m (33)

or
tr < 2.3s. (34)

This is a quite small value compared to cosmological time scales. The value
might be larger for heavy stars, for example supermassive objects in the center
of galaxies. Therefore a time evolution of the universe could be possible which
increases the gravitational forces, if ¢y is interpreted in this way. This would
be the prediction of time-varying laws of nature. Since the term c t¢ comes
from the kinetic energy, it would mean that this energy changes over time,
for example by taking up energy from the background or vacuum field. The
singularity, if coming to lie outside of stars, would play the role of a horizon
formerly attributed to black holes which have been shown not to exist.

Binary pulsar
For binary pulsars the orbit is a decreasing pressessing ellipse of the form

_ aexp(—p0)

~ 1+ecos(xh) (35)

where (§ is a decay constant. In this case it is not possible to substitute 6
completely in the force law. The resulting formula is quite complex:
L2
F=- 5 (36)
202mr? (r—cty)

'(((062—0) tfr26259+2047"2659—2a2r+a20tf) x2

+2apfcty—4apr) \/(627"2—7’2) €280 L 2areft —a2z

+ (204252 —1—2042) r+ (—04252 —a2) ctf).



In the resulting plot (Fig. 4) it can be seen that there is a common maximum
radius for the force for all t4’s. Above this radius the expression for the force
becomes complex because the square root term becomes imaginary. This may
indicate that there is a maximum radius for a binary pulsar and the orbit is
always shrinking.

Hyperbolic spiral
The hyperbolic spiral is defined by

r=— (37)

with a characteristic radius a. Application of the above algorithm yields

(ctfr2 +2a2r7a2¢:tf) L2

F=— (38)

2a2mr?(r — ctf)2
This is a force law of orders 1/r2 to 1/r*. There is no angular dependence. The
graph looks very similar to Figs. 1 and 2.

Logarithmic spiral

The logarithmic spiral is defined by an exponential angular dependence

r = roexp(£0) (39)

with a characteristic radius ro. Similarly as for the hyperbolic spiral, the force

law is ) )
1) 2r —cty) L
po WFHY @rocty) 17 (40)
2mr2(r —cty)

This is a force law of orders 1/r3 and 1/r*. Again the graph looks very similar
to Figs. 1 and 2.
Archimedes spiral

Another type of spiral is the Archimedes spiral
r=a+ b0 (41)

with characteristic lenght parameters a and b. The calculational method leads
to the force law

(2r3 —ctfr2 —|—4b27°—3b20tf) L?

F=- 5
2mr (r — cty)

(42)

which is even up to orders of 1/r%. Nevertheless the graph looks similar to Figs.
1 and 2.



Fermat’s spiral

Similar results hold for Fermat’s spiral
r = aV. (43)
The force law

(87"5 —4ctfr4+6a4r—5a4ctf) L2

F=- 8m 16 (r—ctf)2 (44)
is of maximum order 1/78.
The Lituus
No much different results are obtained for the Lituus
r= aL (45)

The force law is

215 —3ctrrt —8atr+4atcts) L?
oo / : 7) (46)
8atmr? (r—cty)

and contains a term proportional to r which lets the force raise above zero for
large r values but otherwhere is similar to Figs. 1 and 2 again. The maximum
order of the denominator terms is 1/r°.

Euler’s spiral

Finally we investigate Euler’ spiral which is interesting because it consists of
two spirals which are connected and the common arm has zero curvature at the
position of point symmetry. Only one of the spirals is shown in Fig. 5. Its
curvature changes linearly with curve length. Euler spirals are also commonly
referred to as spiros, clothoids or Cornu spirals.

In cartesian coordinates the spiral is given in normlized, parametric form by

t
Sy =z(t) = / cos (s?) ds, (47)
0
t
Sy =y(t) = / sin (s%) ds (48)
0
where t is a parameter and s an integration variable. The integrals are known as

Fresnel integrals and cannot be solved analytically. There are a series expansion
and some approximative formulas. We use the former:

o0 t4n+l

Sy = ;(—1)nm, (49)
0 . tan+3
Sy =2 (1) 2n+ 1) (4n+3)° (50)



Since we have to transform the spiral to polar coordinates we shift the coordinate
origin to the center which is a shift of

™

Sy — Sy — 3 (51)
S, = S, — %. (52)

For small values of t the series converges rapidly but for larger t values, which
corresponds to the inner circular parts, convergence is slow. We needed n = 80
to acheive convergence in the range through ¢ = 5.6 as shown in Fig. 5.

Since the spiral is given numerically we have to evaluate the force law nu-
merically too. First we transform to polar coorcinates:

r=4/5%+ 8%, (53)

6 = arctan % (54)

x

Then we compute the derivatives which are needed for the force law from the
chain rules

dr_drdi _dr (40} (55)
do ~ dtdo  dt \ dt ’
Br_dr (a0 dr it 0
dez — dt2 \ do dt d§?”

The derivatives are computed numerically by the usual discrete difference schemes
and inserted in the original force equation (3):

F= . (57)

The force law is graphed in Fig. 6 in polar coordinates, again for four values
of t;. It can be seen that the forces are regular spirals, there is no singularity
in this case. Increasing ¢y leads to an increase of the force at the the same
angular values. This means, the orbit has a smaller radius for growing ¢; since
the atrractive force is greater. This is similar in behaviour to the other spiral
types. In total only the binary pulsar behaves different from the ellipse and
various types of spirals.
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Figure 1: Force law for the solar system for different parameters ¢ with m =
c=a=z=1, L=10, e=0.1.
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Figure 2: Force law for the solar system, radius section near to singularity.
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Figure 3: Force law for the sun-earth system for different parameters ¢y, loga-
rithmic scales.
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Figure 4: Force law for the binary pulsar for different parameters ¢y with m =
c=a=f=x=1, L=10, § =x/4.
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Figure 5: Normalized Euler spiral with shifted coordinates.
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Figure 6: Force law of Euler spiral (absolute values).









