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ABSTRACT 

Using the method of constraining the Minkowski metric with an observed orbit, 

the equation of motion of a new theory of general relativity is derived self consistently in two 

different ways. The observed orbit is shown to reduce the dimensionality of the metric as 

defined in general, thus simplifying the derivation of the equation of motion. The equation of 

the new general relativity is self consistent, while the Newtonian dynamics are not self 

consistent and the inverse square law is not unique. It is shown that the incorrectly named 

Schwarzschild metric does not reduce to Newtonian dynamics self consistently. 

Keywords: General relativity based on the constrained Minkowski metric, equations of 

motion, ECE theory. 
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1. INTRODUCTION 

Recently in thi s series of papers it has be"en shown that the Einsteinian general 

relativity (EGR) is incorrect in several ways. This has become very easy to demonstrate, it is 

sufficient to differentiate the equation of the precessing ellipse to show that EGR is incorrect 

rundamentall y. The ECE seri es of papers {1- 10} uses the completed geometry ofCartan to 

unify field theory covariantly and straightforwardly. However, the collapse ofEGR means 

that there is a need for a fundamentally new equation of motion based on the infinitesimal 

line element defined from the metric. This is because the obsolete method was based on a 

metric that is now known not to be able to produce a precessing ellipse. In this paper the 

constrained Minkowski metric is used to give this equation of motion self consistently in two 

di ffe rent ways. This method uses the observed orbit as a starting point, and to analyse the 

orbit in terms of Riemann torsion and curvature. In Section 2, some elements of differential 

algebra are given for convenience of reference and to emphasize that the orbit is a function of 

tiJTte as well as of the cylindrical polar coordinates in a plane ( r, A ). Using these methods 

and those of UFT205 (www.aias. us) it is shown that the Evans identity is an exact identity. 

The metric is defined in general and it is shown that this definition is consistent with one 

based on basic differential algebra. 

Tn Secti on 3 the equation of motion of the constrained Minkowski metric is 

developed self consistently using two different methods. It is reduced to the Newtonian limit, 

but it is shown that Newtonian dynamics is not uniquely defined, and conceptually self 

cont radictory. Furthermore it is shown that the so called Schwarzschild metric does not 

reduce to Newtonian dynamics while maintaining the orbit intact. This analysis therefore 

shows that the constrained Minkowski metric is the only valid description of orbits based on 

an in finite simal line element. 
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2. PROOF OF THE EVANS IDENTITY FOR ALL ORBITS 

Some elements of differential algebra are reviewed for ease of reference as 

fo ll ows { 11 }. ff f is a function of one independent variable u and u is a function ofx, then: 

) 

When f is a function of two or more variables : 

then: 

J~ ~h_ -- t)..J.,.. dX ;p_ 
~h-. dj 
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then the tota l der ivat ive is: 
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These definitions are discussed in more detail in note 206(3) accompanying this paper 
... 

0 11 \\W\\'.aias. us. Co nside r a functi on: 



Now let: 

then : 

Secondly let: 
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if both functions are continuous at (a, b). Dividing Eq. ( \'l) by Eq. ( \S ): 
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which is the Evans identity derived in UFT205 (www.aias.us), Q.E.D. 

Consider the orbital function: 

1(x_/~): A(t) 0 -l~0 
<mel ap pl y the rule ( b ) for the tota l derivative. Define: 

then 

where (,.) is the angular velocity, which is the total derivative of e with respect to timet. 

There are contribu ti ons to the angular velocity from the partial derivative and a second term 

as shown in Eq. ( ').) ). In order to construct a self consistent theory of general relativity to 

replace the obsolete Einsteinian general relativity (EGR) it is necessary to define the 

constrained metric rigoro usly. In general {12} the infinitesimal line element is defined in 

terms ofthe metric as : 
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Consider the plane cylindrical polar co ·d· . or mates m the plane: 

d-.'L ") -;_ 0 - c)~) 

J me element is: then the Minkowsk· 1. 

M "l -=- c? JJ: ) - lv: ) - ( ") JAJ :l - ( )2) 

and the Minkowski metric is: 

ln this notation· 

By defining the orbital f ". unction: 

it follows that: 

and: 
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so that: t- ( 

-C~0 100 \ d,, - -- ) -
J 1) 

' ~. 
~o -=- c&-' tl.:x:- ":.. · 

As shown in UFT205 the constrained metric ( 3,6) generates torsion and curvature 

clements. so it is no longer a metric of :flat spacetime. This method is a rigorous development 

ol' special into general relati v ity. In curvilinear coordinates the diagonal metric in the plane: 

~:( ,o "\ .. - Js_ • Js... ~ (3J.) 
~ \ J dl.\. i d~ s 

is defi ned conventiona ll y as: 

- J..A -
So in th is plane: 1,, ) )'). 

- L _(3'i-) 
~ 

(1s) 
~ll. ~ d?.\ ~ o. 

l)v definition. 

-
using the ch~tin rule ( b ). By using the orbital function: 

-
the met ri c m~mi:-.; can be red uced usi ng: .. 

so : 
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The tota l derivmive: J( df _(~0 
JJ __ -\- l- -- ---- 1 ae -------- d( JJ 

ma: then be defi ned. Using the unit vectors: 

(os G j_ --

then: · . 5 ,·~-.8 t S- c•se . - (~ 
--

Finally defin e the metric: 

6\\ • -

using the total derivatives instead of the partial derivatives ofEq. c3l). The complete 

spacetime metric is: \ 0 

0 

which is the sa me as Eq. ( 3 b ) . 

Gy dc!ining the metric through the total derivative ( 4-4-) the existence of the 

orbit is taken into account, s; the metric ( \tS) contains all the information needed to deduce 

th e orbital equation as in the following section. 
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1 TilE ORBJT;\1 ~ EQUAT ION 

Cons~er the constraine~ line elem~1t~ L l ( ) -L ( ) \ I}J J. __. ( 4-b) 
d.s ... -=- c.')cl'L -::.c. OJ. . - )(.,' ) 

where: 

-
and d:t is the infinitesimal of'propertime. Define the lagrangian {12, 13} using the methods 

of general relativity: 

where m is 1 he mass of an object in orbi I. Therefore: V\-- / ':>(._ "). \- (" ") \ J.}J ~ _ ( 4-~ . 
n-G"'l. -:. ~<--") ur~ )"). - ~ j 

The Euler Lagrange equation gives the total energy E and total angular momentum Las 

l .,_ ., .. Jx? + ("))~ .- {-;) 
l ct'L 

J'nllows: 

It follows that: - (-;0 

_, -(s~ 

.. 
ln the limit of free particle motion: 



and: 

For a free particle in linear motion: 
) 

p 

where p is the relativistic momentum: 

In this case: 

L ~ 'f· 

In this limit the angular and linear momenta become non-relativistic so: 

which is the non relativistic definition of angular momentum self consistently. 

By definition: 

(~a) 
(._ '). tl:'L 

:l G"lJj:)- l...J;; • L' 
-

where: 
~)J.}-1 (X-) + r )') ~e ~ - {~ 6) 

~ 
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~ -- _... 

( ~)1/l -(b) so: 

Jk. ~ -3---- ") 

tl'C v 
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where the velocity vis defined bv: 

- 1 ' ~" t/l ~ 
'-i-=- (x -\-() -

. Jj-

From Eq. ( b :l ): 
~)~ 'l 'l 

t-< -
')(.. 

- ('~) 

where: 
Jj _ (bs) 

w -
J1 

so the angular mome~n1 is-dclln~ b:" :l I GV 

J.e. 

~\_-

In the limit: 

then 

which is the non-relativi stic re sult self consistently. From Eq. ( {;3 ): 



--I I' .• 

Jn the limit 

the non rel ati vistic de fi ni tion lol lows: 

l L ~( eu 

-h) 

1\otc carerull) that the ang ular mome ntum defined by Eq. (lO ) is not a constant of motion 

because the only constant ~f motion is defined by the lagrangian ( lt~ ). It becomes a 

constant of motion only in th e non-relativistic limit ( l ~ ). 

The equation of motion can be derived sel[ consistentl y in another way by 

considering the constrained metric: 

for which the lagrangian is: -:1 LJ.!-)l 
f _ l- ~c,"l. -:. l.. ~v - -
cl - l. ). cl'L 

The Euler Lagrange equat ion gives the total energy: 

Therefore: 
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Now use: 

so: 
_1 
\:. 
~ 
~v 

'' 

- ~ . \ t C~ Y)(~)l . -(-0 

-
d_-c 

which is the same as eq. ( 5\ ) Q.E.D. 

The orbital cqu<ltion ( S'J) expresses any o ·b· . 
t It 111 terms of the tot 1 

[ ""'- );~G ~ _ h'\) a energy 

From Eqs. ( <6 \ ) and ( 5'l ) it r II 10 ows that: 

(~~y . ~ 

so: c ~)l-



Tn the limit: 
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Eq. ( ~3 ) reduces to: 

4-
") 'l - (¥~ -- ~ 

'l 
~ c.. r \: -~ 

(._ 

where: 

~~" Yr.." . -l~0 -=, 

~ 
-:::-.. 

From Eq. ( bl ): ') -(fl) ev\_ ~ ""'" 
therefore: 

which is a rigorously self consistent set of equations. 

To exemplify the new orbital equation ( Sl) consider orbits as follows. For a 

circle: 

LA _o 

so 

• 

sell' consistently. For the ellipse: 



-- I I; . 

then the orbital velocit\' is: 

whic h is th e expression lor 'J obtained by differentiating: 

\1 -
in cylindri cL11 polar coordinates. Therefo re Eq. ( ~~ ) is obtained directly from the 

constrained metric: 

In the Newtonian theory { 14} the total Newtonian energy is the sum of the kinetic 

and potential energi es: 

where M is the attracting object, G is Newton's constant and r is the distance between m and 

.. 

The angu lar momentum ot the Newtonian theory is the limit ( t:l,) and the kinetic energy of 



the Newtonian theory is the limit: 

I ~ (¥ - \) t'h. G). ---") 

The Newto ni an limi t is re lated to Eq. cSl) by: 

'-~~ - ~ c~,.J t~~~J~ 
which mea ns thill the concept of po tential energy is replaced by the concept of constrained 

metric . 

lt is well known that the Newtonian theory gives an elliptical orbit: 

\ \- E- ( o.s e 
_ (\oo) 

where ck is the half ri ght magnitude and where E is the eccentricity. It follows that: 

(%)- (~)-
E + ~m...& \ :l -() 

"l"' <J C) 
:(.) ~ )) < l.r S,<t-- ')e. - lot 

In the constrained metric theory this ex pression is generali zed to : l 
4 

') 

(
L "":\ "'). = (._ '). \_ "l. - (' ') ~ (£ \ (' Sik_ Q 

;;; J ~ :1- n-. ')c."" ~ J -C \0)) 
It is claimed in the NC\\tonian theory that the ellipse ( \00) is given by the potential: 

- _(\o:) 
.. 

lluwcver, it may be shO\o\'n as !allows that this choice is not unique, so there is no universal 

law of gravitation. The Newtoni an kinetic energy is: 



c:n the total ]\! . · e\\ to n Jan energy is: 

Us inw b' 

\\ hich is tl 1e i'\, . . . J c\\ ton Jan orbi wl equati on B b . . yo serva tJ on the orbit of . 

system is the e ll ips . ( lOO ~ a planet'" the solar 
c ) . hom thi s equatio . 

(¥;) ~ bJl(~(\ _" > 4-1)). -(to~ 
• Co mparing Eqs. ( \l>~) and (\o "\ ): 
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from which: 

in wh ich E , L, J_ and t are constants, only two ofwhich ( ·J_ and E- ) can be 
tJ 

determined by observation. The potential ( \ o3>) is obtained from the choice: 

) 

l - :l 
1_ t- oL\::r~ L _ 

f\...it.. 'l 

From Eqs. ( \\ \ ) and ( \\ J ): -
However, this is a subjecti ve choice. For an observed J. and f. , the potential 

can be determined only up toE and Lin Eq. ( \\\ ). 
tJ 

The choice ( \\ l ) is not unique, and there is no universal law of gravitation. 

For example V is no longer given by Eg. ( \\ ~ ) for a precessing ellipse { 1 - 1 0}. 

The kinetic energy of the Newtonian theory is given from Eq. ( \\\ ) as: 

T (fl~~] ~ 
- (1\tt) 

~ cfl-d-~~ _(,v so the total linear velocity of m is: 

~ ~ ~ ~~3li-
The quantity that is determined experimentally is: 
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Now denote the Newtonian total energy byE .rJ and the Newtonian angular momentum by l 1'1 

rnr clarity. In the Nc\\ toni an theory these are defined as constants of motion. In the more 

general constrained metric theory: 

-

in which the only constant of motion is the lagrangian: 
~ 1 ~ -i "'(, 

In the general theory ( \\l ) there is no potential energy, a property of general relativity. The 

reduct(ion~N\w;nianthc:;~~through=e-;}~/• ( fN _ \f( {~ _ (\l~ 

v>) t ').- n--.,_c 4- l ~ 

but the Newtonian theory is only one out of an infinite number of possibilities. It is therefore 

entirely wrong to claim that the Newtonian theory predicts an elliptical orbit. 

The on I:-' thing that em be sa id is that any observed orbit can be analysed by the 

orbital equation: -< - (tl~ 

whe re: k - -f - ' L 

and where the S\) called Sch\\<tr/.schild radius is: 



The EGR equatio ( \)\) . 
n can reduce to the more general Eq. ( SJ ) ·r . 

I and only 1[; 

\ -7 t:P . - ( \ )~) 

in which case: 

\ _L + fo --7 ~~ ( ~t-~ - V(<~. -{llv -
\:,~ 'l 'l, L'l <A. ~ ( \_). - '}~\ -

Therefore: 

\ _L + (o ~~fJ -Ct~0 -
'b") l 

( (A__") ~ 

J.e. -). ) 4.-
-4 t~~l· _ ( tn) \.::: -o-c +- \o 

c, "). L "l 
"l 

{~ 

This is true if and only if: 

~J._ -c~~0 

I.C . 

• 

and 
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ln this case however there is no orbit. Therefore the EGR theory never reduces correctly to 
• 

the Newtonian theory, contrary to the claims of the twentieth century literature. 
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