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ABSTRACT

It is demonstrated straightforwardly that a precessing elliptical orbit can be |
described with a Huuke.;' Newton inverse square force law provided that the plane polar
coordinate system is rotating. The rotation generates a Christoffel connection. This is the
simplest way to describe the observed planetary orbit and is preferred by Ockham’s Razor.

Some graphical representations of the theory are given.
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3 Graphical and other analysis of the results of
section 2

First we show that the orbits of Einstein General Relativity are different from
those of the observed kind. Define the radius function r(6) of a precessing
ellipse:
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Rewriting of this eqation gives
a 1
0)=——— 70
cos(at) = & — - (70)
which, with aid of
sin(20)? + cos(z0)? = 1, (71)
can be transformed into
2 2 1
sin(z6)? = S Y (72)
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This expression has to be eqated with the result of EGR for the sin(z6)? term:
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It is seen that the left hand side is a polynom of maximum degree 1/r? while the
right hand side is one of maximum degree 1/r3. Both sides can never be equal
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Figure 1: Force components F2 and F3 for different values of = > 1, with
parameters k=1, = 1.

for a certain range of r. However the variable r must be able to vary because it
describes an ellipse - reduction ad absurdum.

Next we show some examples of force laws for dependencies of 1/r2, 1/r3
and their combinations. We define

ka?
ak (1 — xZ)

Both forces are shown in Fig. 1 for several values of x > 1. Observe that F'3
is positive. The sum of both is graphed in Fig. 2. The positive contribution
effects a minimum in the total force, similar to potentials of atomic orbitals.

The equivalents of Figs. 1 and 2 for parameter values x < 1 are graphed in
Figs. 3 and 4. Here all force components are negative, leading to a lowering of
the total force.

Finally we show particular forms of normal and precessing ellipses. Fig.
5 presents ellipses for several ellipticities e. In Fig. 6 the region of common
crossing points has been enlarged. Precessing ellipses have been plotted in Figs.
7-10. The factor = describes the “multiplicity” of the elllipse in case of integer
values. For non-integral values, the ellipses precess around the near integers.
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Figure 2: Sum of force components F'1 + F2 of Fig.1.
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Figure 3: Force components F2 and F3 for different values of = < 1, with
parameters k=1, = 1.
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Figure 4: Sum of force components F'1 + F2 of Fig.3.
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Figure 5: Ellipses for several values of e.
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Figure 6: Enlarged view of Fig. 5.
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Figure 7: Ellipses with multiplicity 2.
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Figure 8: Ellipses with multiplicity 3.
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Figure 9: Ellipses with multiplicity 4.
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Figure 10: Ellipses with multiplicity 5.






