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ABSTRACT 

The conical sections are shown to develop fractal properties when modified with the 

precession factor x. In theory these are observable orbits. Use of the equation of the fractal 

orbits shows that the Einsteinian general relativity (EGR) fails qualitatively in several, easily 

demonstrated , ways , notably, EGR never develops into fractal orbits, and its orbit equation is 

incorrect qualitatively when compared with the correct fractal orbit equation. All fractal orbits 

are governed by the same universal law of gravitation on the classical level. The universal 

gravitational potential has the same format as the potential of the Schroedinger equation so in 

theory there exists a gravitational Schroedinger equation and fractal orbits of electrons can be 

deduced from electron orbitals in atoms and molecules. 

Keywords: Classical limit of ECE theory, fractal conical sections and orbits, qualitative 

failure of the Einsteinian general relativity. 
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1. INTRODUCTION 

It is well known that the precessing ellipse represents a large class of orbits from 

the solar system to binary neutron stars. The ellipse is a conical section with eccentricity less 

than one, and is the orbit in a plane of Newtonian dynamics. Recently in this series of papers 

{ 1 - 1 0} it has been shown that the precession of the ellipse can be represented by a 

dimensionless precession factor X that multiplies the polar angle e in the equation of the 

ell ipse and the conical sections in general. All precessing elliptical orbits can be described by 

the parameter x on the classical level. In recent papers, lagrangian dynamics have been used 

in the classical limit of ECE theory { 1 - 10 } to show that the precessing elliptical orbits are 

governed by a universal law of gravitation on the classical level. In Section 2 it is shown 

straightforwardly that the Einsteinian general relativity (EGR) fails qualitatively to produce a 

precessing ellipse and is therefore an irretrievably incorrect theory at the basic level. The 

largest value of x observed in cosmology seems to be that of a binary neutron star system 

PSR .10737-3039, in which xi s 1.0469. In the Hulse Taylor binary pulsar xis 1.0117, and in 

-<6 
the solar system x - 1 is of the order 10 . However, in mathematics, x can take any 

value and when it is increased or decreased from unity (the Newtonian value ofx), new and 

hi therto unknown conical sections appear of an infinite variety. These contain repeated 

pa tte rns and are therefore fractal conical sections. For several hundred years the conical 

sections have been identified with orbits and the first identification was made by Kepler for 

the elliptical orbit of Mars. Later it was discovered that the elliptical orbit precesses. 

There fore in theory. the fractal conical sections produce hitherto undiscovered orbits of 

infinite variety, all governed by the same universal gravitational potential on the classical 

level. completely without EGR. The universal gravitational potential has the same 

mathematical structure precisely as the effective potential of the Sclu·oedinger equation, so 
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this type of potential applies from super galactic to electronic scales. So in theory there exists 

a gravitational Schroedinger equation and fractal electron orbits from electronic orbitals. 

These are discussed briefly in Section 2 with reference to the background notes for UFT217 

on www.atas.us. 

In Section 3 the fractal properties of the x modified conical sections are 

illustrated graphically. The qualitative (i.e. total) failure ofEGR is illustrated with the orbit 

equation and with the equation for orbit linear velocity. The structure ofEGR is such that it 

cannot produce the fractal orbits, so EGR was a false turn in cosmology. The 1788 methods 

or Lagrange have turned out to give an infinite variety of orbits all observable in theory. 

2. FRACTAL CONICAL SECTIONS AND ORBITS 

The equation of the conical sections modified by xis: 

\ t E- cos (~e) 

where ( r, & ) is the cylindrical plane polar system of coordinates. Here ri is the half right 

latit ude, E is the eccentricity and x the precession or fractal factor. By differentiation: 

-
<md this is the equation or orbits. fn Eq. ( 1. ): 
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"here E and L are two constants of motion, the total energy and total angular momentum 

respectively, both being conserved quantities. The constant k is defined by: 



where the mass m orbits the mass M in a plane, and where G is Ne\V!on's constant: 
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where c is the claimed c~nstant speed of light in vacuo. In Section 3 it is shown that eq. ( ~ ) 

and ( b ) give qualitatively different results. Graphical methods show that Eq. ( 1. ) for x 

close to uni ty is a precessing ellipse, so Eq. ( b ) does not give a precessing ellipse QED. 

Therefore EGR fails at a basic level, and claims based on EGR are meaningless in science. 

The orbital linear velocity is given by { 1 - 10}: 

~) ~ ~) + ( ~ ( ~)~ -{~) 
Using: 

~- ~ i!L - (") 
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it is found that: 

and from Eq. ( 1... ): 
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The angular velocity is given by { l- 10}: 

EGR claims that {I - 11, 12}: 
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In Section (3 ) it is shown graphically that Eq. ( \ \.r) is again qualitatively different from 

Eq. ( \3 ), which is obtained from the observed precessing ellipse. So EGR has been 

shown in a second way to be basically incorrect, QED. 

lt has been shown in previous work { 1 - 11} using straightforward Lagrangian 

methods that the fractal orbit ( i ) is given for all x by the universal gravitational potential: 

u (_() -

This is a sum of terms inverse in rand inverse squared in r. EGR on the other hand gives a 

potential { 11, 12} that is a sum of terms inverse in r and inverse cubed in r. Therefore EGR 

'1\Jt 
docs noAhc precessing ellipse ( A.. ) for x close to unity, QED. It has been shown in a third 

way that EGR is incorrect at a basic level. The demonstration is straightforward and 

-

irrefutable. It follows that EGR never gives fractal orbits based on the fractal conical sections. 



The universal potential ( \ S ) is obtained straightforwardly from the well known 

classical Lagrangian equation{ l - 10} 

\ -
\_ 

where the force F is defined by: - (n} 

Using Eq. ( i.. ) in the format: 

\ -

produces the force: 

and the potential ( \S ), QED. The Lagrangian is: 

where the kinetic energy is: • :l 
) 

J_ ~ (' + '-
T - - ) 
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and the hamiltonian is the total energy E: . 

The total energy can be expressed as: 
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where: 

The mathematical format of Eq. ( )3 ) is the same as the Newtonian result: 

i. - ()t) 
'(' 

which can be integrated {13, 14} to give the ellipse: 

(3~) J -
' -

\.t t-c~G 

where -(:,;) 
/( - t - . 

When x is not unity: 
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This equation can be integrated to give the result: 

( ~ fl._ I . ~ [>~ 
, + E-, cos e, 

However, it is known that this result comes from Eqs. ( \ b ) and ( \ 8' ), so 

B , -=- :>t e . (n) 

In Eq. ( \~ ): J --7 dt, (3&) 
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Therefore it is found that: 
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and that: 
\ -

is given self consistently from Eg. ( '5 ), QED. 

The ft111damentally new fractal properties ofEq. ( 4-4) can be demonstrated 

(1S fo llows. The rractal ellipse is defined by: 

E ~ \ ' 

\\here a is the semi major axis. Cons ider the Cartesian representation ofEq. ( '"'-"'- ): 
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and b is the semi minor axis. Then X and Y can be expressed in terms of e as follows: 

X. ~ c...f + J(•J c~e) 
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It is shown in Section 3 that these eq uations give fractal patterns, patterns that are repeated as 

x is increased. This appears to be a major discovery in pure mathematics, and also in orbital 

theory, because all known -orbits can be described by Eq. ( ~4-), including those of galaxies. 

It is wel l known that E:Gl\ [nils qual itatively in a fourth way because it does not describe 



galactic orbits at all. . 
The fractal hyperbola is described by Eq. ( 4-4-) with: 
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Its Cartesian representation is: l ' 1 
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where: )\-=- -c..t--\-<C•5e, 1=-< 5 '/e, 
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So the X and Y compone;1ts can be described in terms of e as follows 
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and aga in these produce l'ractal patterns as graphed in Section 3. The fractal parabola is 

defined by 

and again produces hitherto unknown fractal patterns. 

Continuing sys tematicall y in this way it becomes clear that the familiar equations of 

the conical sections wil l all prod uce fractal patterns, for example the asymptote equations of 

the hyperbola. The ordinary hyperbola is: 

---). 
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Let : 

be an asymptote of Eq . ( '() ).Then: 

( o-)"'1. _\,1) 'f-.1 + )a..l n-cX \-

The asymptote approaches the hyperbola at infinity, so both roots ofEq. ( tJ.) are infinite: 

OLl n-) - \., ') -=- 0 1 - :lo..\1-.(-=- 0. - (D) 

The asymptotes of the ord inary hyperbola ( bO) are therefore : 

-+ \, X - ___. 

For the hyperbo la with orbital centre at a focal point: 

(><--~~-
- "l 

-

y- -(a) <1ncl its asympto tes are : 

+ -
where: 
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These well known equations are transformed into fractal equations using: 

/ xe. 
In the centred hyperbola defined by Eq. ( b 0 ) the asymptotes are the straight lines: 
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but in the fractal hyperbola: 

t~(~c~ +b -h0 '/ =- -___. -
..:---- ~ 

~ 
with an infinite array of new properties. Similarly Eq. ( ( h ) becomes the fractal asymptote: 

y + ~ + b~ -h) 
~ --

X 
. -·(~_ where: 

.... 

\ -1- ~ l<>s (x e) 
Finally, for the fractal hype rbola: ~Jv) C•~ (x tJ) - h~) 

again with completely new properties in mathematics. 

It is well known that the effective potential of the H atom in the Sclu·oedinger 

equation {14} is: 

where -e is the charge on the electron, E-o the vacuum permittivity, l the orbital angular 

momentum quantum numbcr.~he reduced Planck constant and m the electron mass. In a 

thought experiment. a d i rcct comparison of Eqs ( \ S) and ( --ntJ produces the following 

results: 
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Here: 

so: 

for the H t 3 a om. From Eqs ( ) --,(, · and ( ' ): 

(:x? - 1..) L1 - -e(~+!)-f)-{t~ 

so to an excel! ent approximati on: 

L " ~l~ \-"~ 'h-t_ -- (~0 
' ~ 

The magnitude of tl 1e angular momentum i n quantum mechanics is. 

Lo ~ ( ~(R_ +1.~'1)1:: -C~0 
so: 
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Under the conditions ( lg) and ( ~l) the two potentials ( \ S) and ( ""1'-t-) are the same. 

The existence of a gravitational Schroedinger equation may be deduced as follows. 

The original Schroedinger equati on for His: 

whe re the hamiltonian operator is: 

{\ 

\1 
Fro m Eq. ( 15): 

and from Eq. ( lb ): 
t~ -

~ (o) 

~._L -(~0 
..--'* tr ro < 

using Eq. ( ~) ). So the gravita~ofnal Sc~e~;~ger equation is: _ ( S?) 
H ~ - ., ' l :l l V\1\ f.r (~g\ 
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Conversely the Schroedinger equation becomes an H atom fractal orbit equation of type ( 4-4 
) under the conditions ( 15 ), ( -"1..~) and ( <i"J ). The half right latitude ofthe H atoms' 

fractal orbit equation is: 

where m is the electron mass and M the proton mass. So: 



The eccentricity is given by: 

E ( 
where \ E\ is the modulus or absolute value ofthe energy eigenvalues of the H atom: 

~ -lg ~ 

\ 
f \ ~ n- ~:__ . L ~ ~· ;- .,,Jo .:J J 

') -,p"> ') 
3d. lf E-" '\.. 1'-- ""' ( '\)} 

where n is the principal quantum number { 14}. Therefore the fractal electron orbit equation 

for each atomic orbital. 

These calculations arc intended as a thought experiment to illustrate the fact that 

the gravitational potential ( \ S ) and the effective potential ( l ~) have the same 

mathematical structure. 

3. GRAPHICAL PROOFS OF THE QUALITATIVE FAILURE OF EGR AND 

GRAPHICAL ILLUSTRATIONS OF FRACTAL CONICAL SECTIONS AND ORBITS. 
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3 Gaphical proofs of the qualitative failure of EGR

and graphical illustrations of fractal conical sec-

tions and orbits

In this section we show the incorrectness of EGR by some graphical examples
and evaluate some properties of fractal conical sections graphically.

3.1 Gaphical proofs of the qualitative failure of EGR

We start with a plot of the angular function θ(r) derived from Lagrange and
Einstein theory. From the experimentally determined orbit (1) we obtain

θ =
1

x
acos

(
1

ε
(
α

r
− 1)

)
, (96)

while Einstein theory gives

θ =
1

x
acos


√
1−

α4
(

1
b2 −

(
1
r2 + 1

a2

) (
1− r0

r

))2
ε4 x4

 (97)

with parameters de�ned in (3) and (7). Using the values

x = 1

m = 1

M = 100

L = 10

E = −10

G = 0.5

c = 1
∗email: emyrone@aol.com
†email: horsteck@aol.com

1



gives an ellipse with α = 2, ε = 0.447. For the Lagrange theory we obtain a
consistent function θ(r) with θ varying between 0 ane π, see Fig.1. For the
Einstein theory, however, the square root argument is negative in the whole
range so that no curve for θ comes out at all. Setting E = 1 leads to an elliptic
orbit with ε = 1.04. We obtain a correct function θ(r) for Lagrange theory again
but a totally di�erent cuve for Einstein theory (Fig.2).

Similar results are obtained for the derivatives dr/dθ. The calculated curves
from the results in Fig.2 are shown in Fig.3, in addition with the function
obtained from Einstein theory directly (Eq.(6)). All three curves di�er, in par-
ticular the derivatives obtained from Eq.(97) and Eq.(6) are totally di�erent.
There are severe inconsistencies in Einstein theory.

A similar e�ect is seen when comparing the linear velocities (13) and (14).
In Fig.4 the Einstein value is graphed for three choices of the constant c. We
used this constant for adopting the curve to realistic results. For higher values
of c there is no solution in the whole θ range so c has to be adopted in a way that
v is de�ned. The second curve of Fig.4 is compared to the result of Lagrange
theory with x = 1 in Fig.5. It can be seen that both cannot be made congruent,
even for other choices of c.

3.2 Graphical illustrations of fractal conical sections and

orbits

The linear velocity v of Lagrange theory for several values of x is graphed in
Fig.6. Although the orbits are quite di�erent for these values, the variation of
v is the same within a scaling factor on the θ axis. In this plot with cartesian
coordinates this comes out quite clearly. Similar results hold for the cartesian
components of the orbit itself (Figs.7-10). The X and Y component are quite
quite di�erent for elliptic, parabolic and hyperbolic orbits as expected, but
varying x means a scaling of the θ axis again. The fractal nature of the orbits
comes out vividly only in the polar coordinate representation.

In order to depict this, two fractal orbits are graphed in Figs.11 and 12 for
x values signi�cantly deviating from unity. For x = 0.5 the planet oscillates
between two radii, while for x = 0.3 the motion between the two exremal radii
is more complicated.

Finally we have plotted the orbits of two real double star systems, the Hulse-
Taylor pulsar and the double neutron star J0737-3039 which has the highest
precession factor x hitheto observed in astronomy. Since the latter has a low
eccentricity, the deviation from a circular orbit is small. the precession of the
ellipse in the Hulse-Tayler pulsar is much more evident. The radius decrease is
only in the range of millimeters per revolution.
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Figure 1: Angle function comparison θ(r) for an
ellipse (α = 2, ε = 0.447).

Figure 2: Angle function comparison θ(r) for a
hyperbola (α = 2, ε = 1.04).

Figure 3: Comparison of derivatives dr/dθ for a
hyperbola (α = 2, ε = 1.04).

Figure 4: Linear velocity of Einstein theory for
three values of c.
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Figure 5: Comparison of Einstein and Lagrange
theory.

Figure 6: Linear velocity of Lagrange theory for
three values of x.

Figure 7: Cartesian X and Y components of an
elliptical orbit (ε = 0.5).

Figure 8: Cartesian Y component of an elliptical
orbit for three values of x (ε = 0.5).
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Figure 9: Cartesian X and Y components of a
nealry parabolic orbit (ε = 0.99).

Figure 10: Cartesian X and Y components of a
hyperbolic orbit (ε = 1.5).

Figure 11: Stable fractal elliptical orbit for
ε = 0.5, compared to Newtonian orbit.

Figure 12: Unstable fractal elliptical orbit for ε =
0.5, compared to Newtonian orbit.
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Figure 13: Orbit of the Hulse-Taylor pulsar
(α = 1.207718 · 109m, ε = 0.617131, x = 1.0117).

Figure 14: Orbit of the double neutron star
J0737-3039 (α = 4.18 · 108m, ε = 0.088, x =
1.0469).
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