


I INTRODUCTION
[Cis well known that the precessing ellipse represents a large class of orbits from
the solar system to binary neutron stars. The ellipse is a conical section with eccentricity less
than onc. and is the orbit in a plane of Newtonian dynamics. Recently in this series of papers
vo- 107 1t has been shown that the precession of the ellipse can be represented by a
dimensionless precession tactor x that multiplies the polar angle 6 in the equation of the
cllipse and the conical sections in general. All precessing elliptical orbits can be described by
©carameter xoon the classical Tevel. In recent papers. lagrangian dynamics have been used
in the classical limit of ECE theory {1 - 10} to show that the precessing elliptical orbits are
governed by a universal law ol gravitation on the classical level. In Section 2 it is shown
t o chttorwardhy that the Einsteinian general relativity (EGR) tails qualitatively to produce a
precessing ellipse and 1s therefore an irretrievably incorrect theory at the basic level. The
largest value of x observed in cosmology seems to be that of a binary neutron star system
PSP T0737-30390 i which xois 1.0469. In the Hulse Vaylor binary pulsar x 1s 1.0117. and in
-9%

the solar system x - 1 is of the order 10 . However. in mathematics. x can take any
value and when it 1s increased or decreased from unity (the Newtonian value of x). new and
hitherto unknown conical scctions appear of an infinite variety. These contain repeated
patterns and are theretore fractal conical sections. For several hundred years the conical
scetions have been identified with orbits and the first identification was made by Kepler for
the clliptical orbit of Mars. Later it was discovered that the elliptical orbit precesses.

i herctore in theory. the fractal conical sections produce hitherto undiscovered orbits of
inlinite variety. all governed by the same universal gravitational potential on the classical
level. completely without EGR. The universal gravitational potential has the same

e ematical structure precisely as the effective potential ot the Schroedinger equation. so
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3 Gaphical proofs of the qualitative failure of EGR
and graphical illustrations of fractal conical sec-
tions and orbits

In this section we show the incorrectness of EGR by some graphical examples
and evaluate some properties of fractal conical sections graphically.

3.1 Gaphical proofs of the qualitative failure of EGR

We start with a plot of the angular function 6(r) derived from Lagrange and
Einstein theory. From the experimentally determined orbit (1) we obtain
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with parameters defined in (3) and (7). Using the values
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gives an ellipse with a = 2,e¢ = 0.447. For the Lagrange theory we obtain a
consistent function 6(r) with 6 varying between 0 ane 7, see Fig.1. For the
Einstein theory, however, the square root argument is negative in the whole
range so that no curve for 6 comes out at all. Setting £ = 1 leads to an elliptic
orbit with e = 1.04. We obtain a correct function 6(r) for Lagrange theory again
but a totally different cuve for Einstein theory (Fig.2).

Similar results are obtained for the derivatives dr/df. The calculated curves
from the results in Fig.2 are shown in Fig.3, in addition with the function
obtained from Einstein theory directly (Eq.(6)). All three curves differ, in par-
ticular the derivatives obtained from Eq.(97) and Eq.(6) are totally different.
There are severe inconsistencies in Einstein theory.

A similar effect is seen when comparing the linear velocities (13) and (14).
In Fig.4 the Einstein value is graphed for three choices of the constant c¢. We
used this constant for adopting the curve to realistic results. For higher values
of ¢ there is no solution in the whole 6 range so ¢ has to be adopted in a way that
v is defined. The second curve of Fig.4 is compared to the result of Lagrange
theory with = 1 in Fig.5. It can be seen that both cannot be made congruent,
even for other choices of c.

3.2 Graphical illustrations of fractal conical sections and
orbits

The linear velocity v of Lagrange theory for several values of x is graphed in
Fig.6. Although the orbits are quite different for these values, the variation of
v is the same within a scaling factor on the # axis. In this plot with cartesian
coordinates this comes out quite clearly. Similar results hold for the cartesian
components of the orbit itself (Figs.7-10). The X and Y component are quite
quite different for elliptic, parabolic and hyperbolic orbits as expected, but
varying x means a scaling of the 6 axis again. The fractal nature of the orbits
comes out vividly only in the polar coordinate representation.

In order to depict this, two fractal orbits are graphed in Figs.11 and 12 for
x values significantly deviating from unity. For z = 0.5 the planet oscillates
between two radii, while for x = 0.3 the motion between the two exremal radii
is more complicated.

Finally we have plotted the orbits of two real double star systems, the Hulse-
Taylor pulsar and the double neutron star J0737-3039 which has the highest
precession factor x hitheto observed in astronomy. Since the latter has a low
eccentricity, the deviation from a circular orbit is small. the precession of the
ellipse in the Hulse-Tayler pulsar is much more evident. The radius decrease is
only in the range of millimeters per revolution.
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Figure 1: Angle function comparison 6(r) for an Figure 2: Angle function comparison 6(r) for a

ellipse (o =2, e = 0.447).
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Figure 3: Comparison of derivatives dr/df for a Figure 4: Linear velocity of Einstein theory for

hyperbola (a = 2, e = 1.04).

three values of c.
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Figure 5: Comparison of Einstein and Lagrange Figure 6: Linear velocity of Lagrange theory for

theory.
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Figure 7: Cartesian X and Y components of an Figure 8: Cartesian Y component of an elliptical

elliptical orbit (e = 0.5).

orbit for three values of (e = 0.5).
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Figure 9: Cartesian X and Y components of a Figure 10: Cartesian X and Y components of a
nealry parabolic orbit (e = 0.99). hyperbolic orbit (¢ = 1.5).
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Figure 11: Stable fractal elliptical orbit for Figure 12: Unstable fractal elliptical orbit for e =
e = 0.5, compared to Newtonian orbit. 0.5, compared to Newtonian orbit.
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Figure 13: Orbit of the Hulse-Taylor pulsar Figure 14: Orbit of the double neutron star
(a=1.207718 - 109m, e = 0.617131, x = 1.0117). JO737-3039 (o = 4.18 - 10°m,e = 0.088, = =
1.0469).



