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ABSTRACT 

It is shown that Einsteinian general relativity (EGR) can be refuted 

straightforwardly by simple considerations of its own force law. A new theory of cosmology 

is developed on the basis of generalized conical sections in which any orbit in two or three 

dimensions can be described using simple mathematics and in the classical limit of ECE 

theory. 
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1. INTRODUCTION 

In recent papers of this series of papers developing ECE theory { 1 - 1 0} it has 

been shown that the conical sections have hitherto unknown fractal properties. Each of these 

fractal conical sections can be in theory an orbit, so a vast array of new orbits is predicted by 

the theory. The well known conical sections are transformed into fractal conical sections with 

a constant x that multiplies the polar angle. The theory is developed in Section 2 by allowing 

X to become r dependent. Here ( r ' e ) are the cylindrical polar coordinates in a plane. It 

is shown that any orbit can be synthesised from the general conical section (GCS) by well 

defined transformation equations. The analysis is extended to three dimension using 

straightforward lagrangi~n analysis with the cylindrical polar coordinates ( r , 8 , Z). In 

Section 3 the new orbits are illustrated and analysed graphically. All orbits of cosmology can 

be described with the GCS method without Einsteinian general relativity (EGR). Section 2 is 

opened with a straightforward and conclusive refutation of EGR from its own force law and 

its own lagrangian methods. 

2. TWO AND THREE DIMENSIONAL ORBITS FROM THE GCS METHOD 

The Einsteinian general relativity (EGR) is easily refuted as follows, so there is an 

urgent need to develop a new cosmology based on far simpler, and correct, mathematics. 

Consider the lagrangian equation developed in recent papers: 

\ 

Here Lis the total angular momentum a constant of motion, m the orbiting mass, and F the 

central force between m and M. EGR claims { 11} that: 
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where G is Newton's constant and where cis the vacuum speed of light, assumed in EGR to 

be a constant. EGR claims that Eq. ( J.. ) produces the precessing ellipse: 

( 

\ -\- f- Cos (x8) 
where r1.. is the half right latitude, f the eccentricity, and xis a constant. Graphical 

analysis in recent papers has shown that x must be close to unity to produce a simple 

precessing ellipse. The precessing ellipse is observed in a large class of orbits in the solar 

system to binary neutror1 stars, and in this class of orbits x is always close to unity. EGR 

claims to describe this class of orbits with precision, but simple algebra as follows shows that 

EGR cannot describe this class of orbits at all. It is obvious from the outset that the force law 

( 'l. ) is incorrect mathematically because Eqs. ( \ ) and ( 3 ) produce: 
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It is equally obvious that the x needed to produce the incorrect EGR force law ( l ) cmmot 

be a constant. and in consequence the incorrect force law ( d.. ) does not produce a 

precessing ellipse. The most famous claim ofEGR is trivially incorrect. 

Consider that X in general is a function of a and denote: 

(s) 

then the generalized conic section (GCS) is defined as: 

-( 
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It follows that: 
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The incorrect claim ( ~ ) of EGR means that: 
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where: 

and sox cannot be a constant QED. The orbit ( b ) is not a simple precessing ellipse, QED. 

In order to emphasise the trivial incorrectness of EGR the following is a 

straightforward reduction to absurdity. Assume that x is a constant independent of rand of the 

po lar angle 

where 

are constants. Therefore: 
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and e can have only two values, reductio at absurdum. 

There is therefore an urgent need for a post Einsteinian paradigm shift, otherwise a 

multip licati on of incorrect cosmological ideas will persist. 

The GCS method is able to describe all known orbits straightforwardly using the 

simple equation: 

\ -\ f (oS ( OJt( &)) 

t s (~) -{~ from which the force law for all two dimensional orbits is: 

\ 

in which the differentiation is defined in Eq. ( 1 ). In general x is a function of r which is 

a function of e . In the special case of constant X, X is defined to have no dependence on 

r or For example, consider a hyperbolic spiral orbit: 
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By differentiation of the GCS: 

X + ~ 
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The equation of the hyperbolic sp iral gives: 
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and 

Stl the transformation equation of the GCS into the hyperbolic spiral is the first order 

differential equation: 
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If it is considered that: 

then the following transfo rmation equation results: 
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Thi s may have an analytical solution but if not, it can be integrated numerically in a 
• 

straightforward manner to find the r dependence of x. 

i.e. any planar orbit can be synthesised from a GCS where f ( e ) is any function of e · 
Deli ne: 

then : 

No w use: 

so: 

I. C. 

From Eqs. ( ) 0 ) and ( 31 ): 

?C 



l~q . ( )lt) transforms the generalized conical section (GCS) into C~ny planar orbit f( e ). 

In Eq. (} ~): 
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The fact that any function f c 0) can be synthesized from a GCS is a new theorem akin to 

the well known Fourier synthesis. In the example of the hyperbolic spiral: 
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and Eq. ( )S) results, QED. 

This analysis can be extended straightforwardly to three dimensions using the 

cylind rical polar coordinates ( r, B , Z). The three Euler Lagrange equations are: 
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in \\' hich the lagrangian is: 
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From Eqs. ( 3~) and ( 3/\) 

where 

From Eqs. ( 3'\) and ( 4-o) 

where 

The radial vector is defined as: 

-
so 
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The distance between mass m and mass M is \ R , so the new universal pootential of -

Now define: 
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and the potential U ( R) is defined by eq. ( ~ ). 
The Euler Lagrange equation is : 
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Eq s. ( J '\ ) and ( S3) give: 
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where the conserved total angul mo:entu: {<_ J ~ {) \ ( S ~ 

The three dimensional orbit corresponding to Eqs. (\~)and ( 5lt) is: 

where: 
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which is a three dimensional and precessing conical section. The transformation used in 

deriving this result is: 
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The three dimensional orbit is therefore: 
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where: 

The two dimensional orbit: rJ 
-
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is recovered when Z vanishes. 
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3. GRAPHICAL ANALYSIS OF ORBITS WITH THE GCS AND THREE DIMENSIONAL 

ANALYSIS. 

Section by Horst Eckardt, Ray Delaforce and Gareth Evans. 
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3. Graphical analysis of orbits with the GCS and three dimensional 

analysis 

In this section we investigate some helical-like orbits which are obtained from the equation  

�� = � ∝
���	
��	(��)�

�
+ ��

���.        (68) 

Fig. 1 develops the familiar circular helix into the elliptical helix as drawn. This figure 

illustrates the Newtonian ellipse ε=0.5, x=1. The conventional planar orbit occurs around a 

mass M. The latter is assumed to move in the Z axis out of the plane and perpendicular to it. 

The helical formula 

� = ���          (69) 

is used for illustration. A value of �� = 0.1 is used throughout the section. The Cartesian X 

and Y components are 

� = �(�) cos(�),         (70)	
� = 	�(�) sin(�)         (71) 

with  

�(�) = ∝
��� 
��(��).         (72) 

This is a static elliptical helix. 

Fig. 2 is a precessing elliptical helix with ε=0.5, x=0.5. Fig. 3 shows a precessing elliptical helix 

with ε=0.5, x=1.2. Fig. 4 is the result of Fig. 3 with Z=0, i.e. a projection onto the X-Y plane. 

Here the graph is reduced to the well know precession pattern. 

Fig. 5 is a Newtonian hyperbolic orbit with ε=1.2, x=1.0 around an object M that moves in 

the Z axis according to Eq.(69). Fig. 6 shows the same orbit with Z=0 (projected). Fig. 7 is a 

side view (X-Z plane). 

A precessing hyperbola with ε=1.2, x=0.3 is graphed in Figs. 8 and 9 (projection to X-Z plane 

and three dimensional view). A completely new type of orbit emerges. 



Fig. 10 is based on the above equations (69-72) with a variable x dependence 

" = �.           (73) 

It produces a hitherto unknown chaotic orbit projected onto the base plane in Fig. 11. The 

chaotic orbit is therefore given by 

�(�) = ∝
��� 
��(�#).         (74) 

A huge number of other new orbits is expected when the Z dependence is made more 

complex than in Eq.(69). 

 

 

 

Fig. 1. Ellipse, ε=0.5, x=1. 

 

Fig. 2. Periodic orbit, ε=0.5, x=0.5. 



 

Fig. 3. Precessing ellipse, ε=0.5, x=1.2. 

 

Fig. 4. Projection of ellipse of Fig. 3 to X-Y plane. 



 

Fig. 5. Hyperbola, ε=1.2, x=1.0. 

 

 

Fig. 6. Hyperbola, ε=1.2, x=1.0, projection to X-Y plane. 

 



 

Fig. 7. Hyperbola, ε=1.2, x=1.0, projection to X-Z plane. 

 Fig. 8. Generalized hyperbola, ε=1.2, x=0.3, projection to X-Z plane. 

 

Fig. 9 Generalized hyperbola, ε=1.2, x=0.3. 



 

Fig. 10. Chaotic orbit with epsilon=1.2, x(θ) = θ. 

 

Fig. 11. Projection of Fig. 10 onto X-Y plane. 

 


