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ABSTRACT

The N particlé gravitational problem is solved analytically in the pairwise
additive approximation. The solution is illustrated for three interacting particles, and Stokes’
Theorem used to introduce the concept of orbital circulation. It is shown numerically that the
orbital circulation is non-zero for all conical sections and precessing conical sections with the
exception of circular orbits. The orbital circulation may therefore be used to characterize all

orbits known in cosmology.
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orbital circulation.
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1. INTRODUCTION

Recently in this series of papers {1 - 10} on the applications of ECE theory the
Einsteinian general relativity (EGR) has been refuted in many ways and replaced by a
relativity based on the constrained Minkowski metric. In the classical limit of this new
relativity it has been shown that all the features of planetary precession can be explained
straightforwardly with the equation of the precessing conical section, and a myriad of new
properties discovered in terms of the precession constant x. All known orbits in cosmology
have been shown to be explicable in terms of x and the equation of the precessing conical
section. In immediately preceding papers the investigation of the classical limit of the new
relativity has been extended to the multi particle gravitational problem, thought to have no
known analytical solution, and in the preceding paper a new form of Kepler’s third law
interred for a precessing orbit.

In Section 2 of this paper it is shown that the N particle gravitational problem
can be solved analytically in a relatively straightforward way given the usual form of the
starting lagrangian for the problem. This is a four hundred year old problem in cosmology,
and up to now it has been thought to have only specialized solutions discovered by Euler,
Lagrange, Poincare and others. Stokes’ Theorem is used to develop the solution for three
intcracting particles. and a new concept developed of orbital swirl or circulation. In Section 3

some of the results are illustrated graphically.

2. SOLUTION AND CONCEPT OF ORBITAL CIRCULATION

Consider three masses interacting simultaneously with the following lagrangian
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This is the standard format of the lagrangian for what is known as the three particle

cravitational problem in Newtonian dynamics. Here m  are the masses, G is Newton’s
constant, and the coordinates are defined in Fig. (1).
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The centre of mass of the three particle system is defined to be at the origin of the coordinate

svstem. So:
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Therefore the lagrangian is:
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woncing s ( I\ ) and ( P! ) gives the reduced lagrangian:
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where the reduced mass is: \
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Now consider the Euler Lagrange equations: ((‘>
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with the Tagrangian ( l} ). Ths solution of Egs. ( \L }and ( r‘ } is well known {11} to
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be the elliptical orbit:

where d-\ is the semi right latitude and é \ is the eccentricity. Similarly:
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This is the same result as in previous work {1 - 10} and obtained with a different method.

Therefore 1t follows that the general solution of the N particle problem is:
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aiven the lagrangian ( B ) extended to N particles. For N masses in a plane the constraint

( PA ) is extended to N masses. For precessing orbits {1 - 10} the general solution is
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where X ; is the precession factor for each orbit. Therefore the N particle gravitational
pronfem has been solved for the first time.

Straightforward application of Stokes’ Theorem gives:
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where S .« is the orbital circulation:
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orbital circulation 1s a new concept in cosmology and some examples are graphed in

Scction 3. For precessing orbits: Q
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In general for any curve in a plane {11}:
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This integral was evaluated numerically and gives the result:

%e e P ~(9)

For precessing orbits: S o 9 /) w — ( Sé)
g@_&g— . (—‘.o(\-x;/ﬁé s 0)}“”



so the crrculation vectors are additive as follows:
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where the eccentricities are:

and where f(\' are the times taken for each orbit to transcribe 2 [ radians.

The orbital circulation seems to be a new concept of cosmology, and may be used to
characterize every orbit. It is non-zero for every orbit in general. with the exception of a

circular orbit. For a circular orbit:
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In the case of the circle: . (
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Foecirele s detined by the conical section equation:
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3. GRAPHICAL ILLUSTRATIONS.

Section by Dr. Horst Eckardt
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3 Graphical illustrations

The orbital circulation S of Eq.(28) is demonstrated in Fig. 1 for three values of
x. This function oscillates between negative and positive values. In Fig. 1 the
elliptic radius r has been added for comparison. It can be seen that .S crosses
zero where the ellipse takes its minimum and maximum radial values. This
has been shown in a polar plot in Fig. 2. Since negative values are plotted as
positive values rotated by 180 degrees, two ellipsoidal structures appear for S
in Fig. 2. Obviously S is not symmetric for positive and negative values, the
ellipsoidal structures are distinct.
The circulation integral of Eq.(36) can be solved to be

2
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This is a positive function and takes its maximum where r(6) is maximal too,

see Fig. 3.

For hyperbolas, the S function shows poles as graphed in Fig. 4. Corre-
spondingly, the circulation integral approaches infinity at the same values (Fig.
5). The effect of x is to stretch the angular axis in all cases.

*email: emyrone@aol.com
temail: horsteck@aol.com
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Figure 1: Orbital circulation S for ¢ = 0.3 and different = values, compared
with elliptic radius 7.
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Figure 2: Polar plot of orbital circulation S for e = 0.3, x = 1, compared with
scaled elliptic radius r/4.
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Figure 3: Circulation integral for « = 1, ¢ = 0.3 and different x values.
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Figure 4: Orbital circulation S for a hyperbola with € = 1.5.
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Figure 5: Circulation integral for a hyperbola with o = 1, ¢ = 1.5.
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