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ABSTRACT

The x theory of precessing conical sections is developed to derive expressions for
the area and circumference. of a closed and precessing conical section. The x theory is a
theory of all observable orbits in terms of the precessing conical sections, and an example is
given of the theory at work. The meaning of the familiar Newtonian force law is explained
with lagrangian dynamics, and the universal force law of the x theory derived in a simple
way. The effect of the precession factor x on experimentally observable quantities is

evaluated.

Keywords: Classical limit of ECE theory, x theory, force law for precessing orbits.

WET 2N




1. INTRODUCTION ]

Recently in this series of over two hundred papers to date a theory of all
observable orbits has been developed on the basis of the precessing conical sections {1 - 10}.
The latter are characterized by the precession factor x. The angle of precession is also defined
by x and is 14{( X - 1). In the solar system it is well known that the precession angle is a
few arc seconds per century, so X is very close to unity in the solar system. In binary pulsars
and binary neutron stars, systems in which the largest precessions are observed, x is a few
percent different from unity. However, it has been discovered in recent papers of this series
that when x is increased the precessing conical sections take on a variety of hitherto unkn;)wn
properties, including fraétal properties. When x is allowed to become r dependent, all
observable orbits can be described by precessing conical sections. Straightforward lagrangian
analysis produces the force law for orbits that are described by precessing conical sections.
The force law 1s a sum of inverse square and inverse cube terms in r, the distance between the
planet and the sun. The universal gravitational potential is therefore the sum of terms inverse
and inverse squared in r. The x theory describes precessing orbits straightforwardly without
the need for Einsteinian general relativity (EGR), which is erroneous in many ways {1 - 10}.
The definitive refutation {1} of EGR is that it claims erroneously to produce a precessing
conical section from the wrong force law. The force law of EGR is a sum of terms inverse
squared and inverse fourth in r. It is perfectly easy to show that this force law does not
produce planetary precession, and this was first pointed out by Schwarzschild {11}. The
whole development of EGR during the twentieth century is erroneous. This realization has led
to the much simpler and more powerful x theory of all orbits. So the end result is a significant
advance in physics and alsc; mathematics. Before this work, fractal conical section theory was

unknown, and 1s a potentially rich subject area that can be developed mathematically.



In Section 2 Green’s Theorem is used to derive an expression for the area of a closed
and precessing conical section, the precessing ellipse. These simple mathematical exercises
take on a new meaning and importance now because it is known that increasing x produces
wholly new mathematics. In physics the area of an orbit is well known to be related to
Kepler's second and third laws. Precise details are given of the derivation of the polar
equation of the ellipse from the Cartesian equation of the ellipse, and again, such details take
on a new importance. A worked example is given of x theory, the derivation of a logarithmic
spiral orbit from a precessing conical section. The precise meaning is de\./eloped with
lagrangian dynamics ot the Newtonian force law, and the new universal force law derived of
the x theory. The derivation is a simple consequence of well known lagrangian dynamics, b'ut
again takes on a new meaﬁing in mathematics as x is increased. Conceivably, there may be
orbits in astronomy that show the fractal properties of x theory. Finally the circumference is
calculated of a precessing orbit, and again, as X is increased, the properties of the
circumference take on a completely new meaning.

In Section 3, graphical results of the derivations of Section 2 are presented and

analysed.

2. PROPERTIES OF THE PRECESSING ORBITS IN x THEORY
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Consider the Cartesian equation of the ellipse:
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where a and b are respectively the semi major and semi minor axes. In Eq. (1):
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where 9 is the polar angle of the plane cylindrical polar system of coordinates. In



planetary theory the sun is at one focus P of the ellipse, so the polar equation is needed of the
cllipse with respect to the focus P. The focus P is the point ( & e , 0) where ¢ is the
cecentricity of the ellipse. The distance r from the point (X, Y) to (q(—, 0 ) 1s the radial

coordinate of the plane cylindrical system. From elementary considerations:
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The eccentricity of the ellipse is defined by:
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Therefore:
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It is customary to take the negative root of Eq. ( 5 ) to define the polar equation of the
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cllipse. so:



in which the semi right latitude is:
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. ( % ) is the polar equation of the ellipse, Q. E.D. It is also the polar equation of all the

conical sections as first shown by Bernoulli.

The area of the ellipse i1s given by a simple application of Green’s Theorem:
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In circular polar coordinates: - .
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{rom which follows the well known {12} equation for any line in a plane:
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[n astronomy. eq. ‘S ) leads to Kepler’s second law {12}.
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and the area 1s sell consistently: p!

A - 3§8w:5%"ﬁrﬂ:6’ ]

l’an. GS"“Q
= gQ_____\K % ;y/,t@n ((‘( 9>:>|D > W

= - € ‘hk’%ﬁ’ = a\otm;\o
- bl <(L—;> ~(1g)

In this case it is easier to derive the area from Green’s Theorem. For the precessing ellipse
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Fhe integral can be evaluated straightforwardly using the change of variable:
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The result is graphed in Section 3, and as x increases the area develops new mathematical
nronerties that mayv conceivably be observable in astronomy. The solar system is the case
where x is very close to unity.

It is convenient to exemplify x theory by considering the logarithmic spiral orbit:
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In x theory this is represented by a precessing conical section: ()S
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The force law responsible for the orbit ( 1\-\-) is found straightforwardly using elementary



methods {12} from the lagrangian equation: :
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woere the conserved total angular momentum is:

L - /«f ,_“ "(Tl

The reduced mass /L« of two interacting particles of masses m (planet) and M (sun) is
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and I € Vs the radially or centrally directed force between m and M. From Egs. ( )\-\— )
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¢ ogarithmice spiral orbitis given by an inverse cube force law. The angular velocity is

given by:
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and elementary integration produces the orbital interval:
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an cquation which is easily inverted to give as a function of t:
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In general, from Eq. ( \\l') and Green’s Theorem:
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which 1s Kepler’s second law, “equal areas in equal times”. Therefore in general:
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This is a useful equation which is true for all orbits in a plane. The orbital interval can be

measured with great accufacy in contemporary astronomy. From Egs. ( )\-\-) and (}5 ):
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whichis Eq. ( D\ ). Q.E.D.

I-lementary integration {12} gives:
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for the logarithmic spiral orbit. From Eq. ( )S) _ 6\6 (}X)
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Therefore a logarithmic spiral orbit can be represented as a precessing conical section given
the x factor of Eq. ( \«\'O ). Similarly any planar orbit can be represented as a precessing
conical section, giving a consistent theory of all cosmology. one which represents all orbits as
precessing conical sections with the same universal force law.

With reference to the accompanying background note 222(3) on www.aias.us
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Note carefully that this is what is known conventionally as the Newtonian force law. Here:
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Nowton's theory cannot explain planetary motion as is well known {12}. The force law ("I‘)
is pure attraction, and the contrivance of centrifugal force is just that. a contrivance. There is
no centrifugal force, there is only rotational kinetic energy. In ECE theory {1 - 10} a
completely new approach to planetary motion has been forged based on the Cartan torsion of
spacetime itsell. The basic problem with Newtonian dynamics is that it applies to motion in a
straight line. and it cannot deal with angular motion self consistently. The lagrangian theory
on the other hand produces the information just given, and does so self consistently. For
example, the lagrangian theory produces the net orbital force of Eq. ( \-\'\ ), and this net
force is zero if: S p!
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In the usual textbook dogma it is claimed that the attractive Newtonian central force /« & ( /
p p

is balanced by the repulsive centrifugal force { Jand this produces the well known
condition ol weightlessness. This explanation is clearly fallacious however because the net
force in Eq. ( L\'L) is the same as that in Eq. ( L‘—\ ), and it is not zero. The correct

explanation is that the acceleration of the ellipse is:
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and this result was derived in another way in UFT196. Newton’s “explanation” of the
Kepterian laws is pure empiricism and was in fact discovered not by Newton, but by Hooke.
This historical fact is made very clear by John Aubrey in the online “Brief Lives™.

The precessing ellipse is defined by: (
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These simple derivations of fagrangian dynamics again take on a new meaning when x 1s

increased. so polar plots of Egs. ( SO ) and ( 5\ ) show many new properties. They are

exemplified briefly in Section 3. For any curve in a plane {12}:
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(Kepler's second law). So: _
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However this area is the area of the ellipse:
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This equ alytically.

With reference 10 note 222(4) of www

.alas.us the adjustments to these results

duc to precession are as follows. The universa] force law is:
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and produces all known orbits given the appropriate x. This law has been exemplified already
with the logarithmic spiral orbit. The law ( é‘ ) is tl}e only law that produces a precessing
cllipse in fagrangian dynamics. The claims of EGR to produce a precessing ellipse are badly
crroneous and EGR uses the same lagrangian dynamics. The linear central velocity and

acceleration are adjusted as follows:

and -] ‘ \
D( ‘ — ap——— ]
Lﬁ__ = <”—5 ; 3 v ol

and again the use of an increasing x leads ot new physics and mathematics. These results are

summarized graphically in Scetion 3. Finally the arca ol the precessing orbit is adjusted to:
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SECTION 3: GRAPHICAL REESULTS AND ANALYSIS.

Scction by Dr. Horst Eckardt
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3 Gaphical Results and Analysis

In this section the functions dr/dt, A(r,0) and its derivative dA/dr are graphed
in different representations. The formulae are derived in full detail in the con-
comitant note 222(5) of this paper. We present a form f(r) and f(6) to be able
to display the radial and angular dependencies. For the radial velocity dr/dt we
have from Egs.(50) or (62):
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Figure 1: dr/dt for parameters L=1, u=1,a =1, e = 0.3.

The effects of the factor = are as follows. Fig. 1 shows the radial velocity
which is largest for high x values. The polar plot (Fig. 2) of the same function
shows that this is a circle for x = 1 which transforms into a precessing figure as
does the radial function for x values different from unity.

The area of the ellipse grows with a rate dependent on = (Fig. 3). The
starting area value is not zero but negative because of the definition of the
tangens fuction in Eq.(69). All area functions are crossing zero at the same
radius. The dependence of A on x is shown for three fixed radius values in
Fig. 4. Rising as well as falling area values are possible with growing x. The
counterpart of Fig. 3 is graphed as a polar diagram in Fig. 5. When the sign of
A changes, the the graphical representation of the function value is shifted by
180 degrees as is customary for this kind of plots.

The radial derivative of A (Fig. 6) is infinite at the minimum and maximum
radius as can be seen from the vertical tangents in Fig. 3. In the polar diagram
(Fig. 7) this leads to an unlimited growth of the curves. Finally the total area
integrated for a full circle (i.e. the area of 360 degrees of a precessing ellipse) is
graphed in Fig. 8. The curve has to be shifted at the discontinuities to give a
continuous graph. This is again an effect of the definition fo the inverse tangens
function in Eq.(69). A grows as an injective function with x.
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Figure 3: A(r) for parameters o = 1, ¢ = 0.3.
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Figure 4: x dependence A(x) for three fixed radii with parameters a« = 1, € =
0.3.
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Figure 5: A(6) (polar plot) for parameters a = 1, € = 0.3.
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Figure 6: dA/dr for parameters o = 1, ¢ = 0.3.

Figure 7: dA/dr (polar plot) for parameters o = 1, e = 0.3.
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Figure 8: Angular integrated value A(z) for parameters o = 1, e = 0.3.
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