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ABSTRACT 

A new linear equation is developed of relativistic quantum mechanics and the 

equation is applied to the theory of quantum tunnelling based on the Schroedinger equation in 

the non relativistic limit. Using a square barrier model in the first approximation, it is shown 

that low energy nuclear fusion occurs as a result of the Schroedinger equation, which is a 

limit of the ECE fermion equation. It is shown that for a thin sample and a given barrier 

height, 1 00% transmission occurs by quantum tunnelling even when the energy of the 

incoming particle approaches zero. This is therefore a plausible model of low energy nuclear 

reaction. The new relativistic equation is used to study relativistic corrections. Absorption of 

quanta of spacetime may result in enhancement of the quantum tunnelling process. 

Keywords: Limits ofECE theory, linear relativistic quantum mechanics, low energy nuclear 

reaction, quantum tunnelling 
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1. INTRODUCTION 

Recently in this series of papers { 1 - 1 0} the ECE fermion equation has been used 

to give an explanation of low energy nuclear reaction (LENR { 11} ), which has been observed 

experimentally to be reproducible and repeatable, and which has been developed into a new 

source of energy. In this paper the plausibility of LENR is examined with a new linear type of 

relativistic quantum mechanics which can be derived straightforwardly from classical special 

relativity, a well defined limit ofECE theory. It is shown in Section 2 that the Einstein energy 

equation can be quantized directly into a new type of linear, relativistic Schroedinger equation 

which reduces in the non relativistic limit to the Schroedinger equation. It is well known { 12} 

that the latter is the basis for quantum tunnelling theory, and can be solved to give the 

transmission coefficient of quantum tunnelling. In Section 2, the well known standard theory 

{ 12} of quantum tunnelling is used with a rectangular barrier of thickness 2a and height V 
0 

where V 
0 

is the potential energy. This is a simple but instructive model of nuclear fusion in 

which an incoming atom meets the Coulomb barrier of a second atom and tunnels into it, 

causing nuclear fusion. It is shown that 1 00% transmission (complete tunnelling) can occur 

for a thin sample when the energy E of the incoming particle approaches zero for a finite V. 

This process is graphed in Section 3. Relativistic corrections ofthis simple theory can be 

developed from the new linear equation derived in this paper of relativistic quantum 

mechanics. Relativistic corrections are graphed and discussed in .Section 3. 

2. LINEAR EQUATION FOR RELATIVISTIC QUANTUM MECHANICS AND 

APPLICATION TO THE TRANSMISSION COEFFICIENT OF QUANTUM 

TUNNELLING. 

Consider the Einstein equation of special relativity { 12}: 



where E is the total relativistic energy: 

and where p is the relativistic momentum: 

f 
Here m is the particle mass, c the speed of light in vacuo, and Y is the Lorentz factor 

~ ( t-~j-t/~ 
where v is the particle velocity. The classical relativistic hamiltonian is 
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where Vis the potential energy. 

The problem faced by the pioneers of relativistic quantum mechanics was the 

quantization ofEq. ( i ) using the Schroedinger postulate: 

A ~~i:)~ -(b) 
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Eq. ( 1. ) produced the Kiein Gordon equation: 
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and the Dirac equation, which has been recently developed into the ECE fermion equation in 

UFT172 ff. of this series. These are all non-linear in E because of the structure ofEq. ( 1 ). 
Consider Eq. ( 1.... ) in the format: 

\ 

By using the momentum operator: 

1\ 

\ 
Eq. ( ~ ) becomes a linear, relativistic Schroedinger equation of a new type 

and where the total energy eigenvalues are: 

The eigenfunction + is the wave function of the Schroedinger equation generalized to 

relativistic quantum mechanics. r' 

It follows that: 
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The Schroedinger postulate ( b ) combined with the de Broglie Einstein postulate is: 
• 
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where: 
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Here Cv 

For a free wave I particle: 

so: 

which is the classical relation between momentum and velocity. For the purposes of quantum 

tunnelling theory denote: 

vr--c -' -t' 

In the presence of potential energy V the operator ( I~ ) becomes: 



so: 

and: 

In quantum tunnelling theory we wish to .d COnSl er: 

so we define: 

Denote the rest wavenumber by: 

Vco - ~( 

then arrive at the definition: 

Eq. ( ). \ )can be written as: 
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where 
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so we arrive at the definition: 



In order to forge a precise analogy with the Schroedinger equation write Eq. ( J~) 
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). 

as 

In the non relativistic limit: 

and reduces to the classical kinetic energy of a free particle: :l ( 0 
- --- - J_ Yr-.'-./ - 14-\: :::- \ - :l 

so: 

and: 

which is the non relativistic limit of: 
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and: 

t at the transmission coefficient of It is well known { 12} h quantum tunnelling is: 
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for a potential of the type: 
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in which: 

InS f ec IOn 3' various results from the standard . \.\ equatiOn ( "t" ) are graphed with the 



intention of finding the optimal condition for low energy nuclear reaction described through 

the process of quantum tunnelling. These results are augmented by considerations based on 

the new relativistic Schroedinger equation ( ) <6 ). This is a simple first theory, contemporary 

supercomputers and code packages can be applied to the problem of simulating the fusion of 

one atom with another. The analysis in Section 3 shows that the single most important factor 

is the mass m of the incoming particle. The extra ingredient given by ECE theory is the 

possibility of augmenting this standard quantum tunnelling theory with resonant absorption of 

quanta of spacetime energy. That will be the subject of future work. 

3. GRAPHICAL ANALYSIS AND DISCUSSION 

Section by Horst Eckardt and Douglas Lindstrom 
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3 Graphical analysis and discussion

We start the graphical analysis with the transmission coe�cient T (Eq.(41)) for
the rectangular barrier. The coe�cient depends on wave vectors k and κ and
barrier half-width a. In the 3D plot of Fig. 1 the κ dependence is plotted for
three values of k with constant a. One sees that T is maximal for k and κ going
to zero. In Fig. 2 both a and k have been varied. It can be concluded that T is
at maximum when ka as as well as κ are minimal; this corresponds to quantum
waves with lowest energy.

Since k and κ depend on the energy E and height of the potential well
V0 (Eqs. (44,45)), it is more conclusive to study the dependence on these pa-
rameters. For Fig. 3 the parameters were chosen so that T is near to zero
in the range E < V0 which corresponds to the classical limit. Above V0 the
transmission oscillates as can be expected from wave mechanics. For a di�erent
parameter set (Fig. 4), T is quite high in the �forbidden� region, showing the
quantum mechanical tunneling behaviour. This can also be seen from Fig. 5 in
a 3D representation.

In the remaining �gures the relativistic e�ects are studied. According to Eqs.
(44,45) the total energy E depends on γ, therefore it is of interest to study the
dependence T (γ) or T (v/c). The latter is graphed in Figs. 6 and 7 for a = 0.1
and a = 1, for three values of V0 each, all constants set to unity. This shows
the principal behaviour of the transmission coe�cient. It depends highly on the
potential barrier. In all cases T drops to zero for v → c. For high V0 values it
is constant in a broader range, denoting that relativistic e�ects decrease with
increasing V0.

Fig. 8 describes tunneling of an electron through another electron. We had
to use atomic units in the calculation, otherwise the arithmetic explodes because
of the high values of mc2. V0 is interpreted as the Coulomb barrier and kept �x
now at a value of

V0 =
1

relectron
= 18797.0
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Figure 1: Transmission coe�cient T (κ) for three k values and a = 1.

in atomic uits. The curves are shown for three mass values, where the electron
mass is m = 1. The tunnelling probability decreases drastically with slightly
enhanced masses. Mass is a very sensitive parameter. This can also be seen
from Fig. 9 where we have graphed the mass dependence directly with v/c as a
curve parameter. For v → c the transmission coe�cient degenerates to a delta
function at m = 0.

Finally we considered proton-proton tunnelling (Fig. 10). This is impossible
because the transmission is practically zero for m > 4 and the proton mass
is 1836 electron masses. The Coulomb barrier is similar as for an electron as
the particle radius for both particles is in the same order of magnitude. Tests
showed that the barrier value is not dicisive, it is the particle mass.
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Figure 2: Transmission coe�cient T (k, a) for �ve values of κ.

Figure 3: Transmission coe�cient T (E) for m = ~ = 1, a = 1.
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Figure 4: Transmission coe�cient T (E) for m = ~ = 1, a = 0.1.

Figure 5: Transmission coe�cient T (E, a) for m = ~ = 1, V0 = 10.
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Figure 6: Relativistic transmission coe�cient T (v/c) for c = m = ~ = 1, a = 1.

Figure 7: Relativistic transmission coe�cient T (v/c) for c = m = ~ = 1, a =
0.1.
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Figure 8: Relativistic transmission coe�cient T (v/c) for electron-electron tun-
neling, electrom mass is m = 1.

Figure 9: Mass dependence of the realtivistic transmission coe�cient T (m) for
electron-electron tunneling, electrom mass is m = 1.
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Figure 10: Relativistic transmission coe�cient T (v/c) for proton-proton tun-
neling, proton mass is m = 1836.
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