


1. INTRODUCTION

Recently in this series of papers {1 - 10} the ECE fermion equation has been used
to give an explanation of low energy nuclear reaction (LENR {11}), which has been observed
experimentally to be reproducible and repeatable. and which has been developed into a new
source of energy. In this paper the plausibility ot LENR is examined with a new linear type of
relativistic quantum mechanics which can be derived straightforwardly from classical special
relativity, a well defined limit of ECE theory. It is shown in Section 2 that the Einstein energy
equation can be quantized directly into a new type of linear, relativistic Schroedinger equation
which reduces in the non relativistic limit to the Schroedinger equation. It is well known {12}
that the latter is the basis for quantum tunnelling theory. and can be solved to give the
transmission coefficient of quantum tunnelling. In Section 2. the well known standard theory
{12} of quantum tunnelling is used with a rectangular barrier of thickness 2a and height ‘'
where V" is the potential energy. This is a simple but instructive model of nuclear fusion in
which an incoming atom meets the Coulomb barrier of a second atom and tunnels into it.
causing nuclear fusion. It is shown that 100% transmission (complete tunnelling) can occur
for a thin sample when the energy E of the incoming particle approaches zero for a finite V.
This process is graphed in Section 3. Relativistic corrections of this simple theory can be

developed from the new linear equation derived in this paper of relativistic quantum

mechanics. Relativistic corrections are graphed and discussed in Section 3.

2. LINEAR EQUATION FOR RELATIVISTIC QUANTUM MECHANICS AND
APPLICATION TO THE TRANSMISSION COEFFICIENT OF QUANTUM
TUNNELLING.

Consider the Einstein equation of special relativity {12}:





















intention of finding the optimal condition for low energy nuclear reaction described through
the process of quantum tunnelling. These results are augmented by considerations based on
the new relativistic Schroedinger equation ( ). This is a simple first theory. contemporary
supercomputers and code packages can be applied to the problem of simulating the fusion of
one atom with another. The analysis in Section 3 shows that the single most important factor
is the mass m of the incoming particle. The extra ingredient given by ECE theory is the
possibility of augmenting this standard quantum tunnelling theory with resonant absorption of

quanta of spacetime energy. That will be the subject of tuture work.

3. GRAPHICAL ANALYSIS AND DISCUSSION

Section by Horst Eckardt and Douglas Lindstrom
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3 Graphical analysis and discussion

We start the graphical analysis with the transmission coefficient T' (Eq.(41)) for
the rectangular barrier. The coefficient depends on wave vectors k and s and
barrier half-width a. In the 3D plot of Fig. 1 the x dependence is plotted for
three values of k with constant a. One sees that 7" is maximal for k and s going
to zero. In Fig. 2 both a and k have been varied. It can be concluded that T is
at maximum when ka as as well as xk are minimal; this corresponds to quantum
waves with lowest energy.

Since k and x depend on the energy E and height of the potential well
Vo (Egs. (44,45)), it is more conclusive to study the dependence on these pa-
rameters. For Fig. 3 the parameters were chosen so that 7' is near to zero
in the range £ < Vy which corresponds to the classical limit. Above Vj the
transmission oscillates as can be expected from wave mechanics. For a different
parameter set (Fig. 4), T is quite high in the “forbidden” region, showing the
quantum mechanical tunneling behaviour. This can also be seen from Fig. 5 in
a 3D representation.

In the remaining figures the relativistic effects are studied. According to Egs.
(44,45) the total energy E depends on =, therefore it is of interest to study the
dependence T'(y) or T'(v/c). The latter is graphed in Figs. 6 and 7 for a = 0.1
and a = 1, for three values of V|, each, all constants set to unity. This shows
the principal behaviour of the transmission coefficient. It depends highly on the
potential barrier. In all cases T drops to zero for v — ¢. For high V{, values it
is constant in a broader range, denoting that relativistic effects decrease with
increasing Vj.

Fig. 8 describes tunneling of an electron through another electron. We had
to use atomic units in the calculation, otherwise the arithmetic explodes because
of the high values of mc?. V; is interpreted as the Coulomb barrier and kept fix
now at a value of )

Vo = — = 18797.0
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Figure 1: Transmission coefficient T'(k) for three k values and a = 1.

in atomic uits. The curves are shown for three mass values, where the electron
mass is m = 1. The tunnelling probability decreases drastically with slightly
enhanced masses. Mass is a very sensitive parameter. This can also be seen
from Fig. 9 where we have graphed the mass dependence directly with v/c as a
curve parameter. For v — ¢ the transmission coefficient degenerates to a delta
function at m = 0.

Finally we considered proton-proton tunnelling (Fig. 10). This is impossible
because the transmission is practically zero for m > 4 and the proton mass
is 1836 electron masses. The Coulomb barrier is similar as for an electron as
the particle radius for both particles is in the same order of magnitude. Tests
showed that the barrier value is not dicisive, it is the particle mass.
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Figure 2: Transmission coefficient T'(k, a) for five values of «.
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Figure 3: Transmission coefficient T'(E) for m =h=1, a = 1.
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Figure 4: Transmission coefficient T'(E) for m =h =1, a =0.1.
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Figure 5: Transmission coefficient T'(F,a) for m =h =1, V5 = 10.
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Figure 6: Relativistic transmission coefficient T'(v/c) forc=m=h=1, a = 1.
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Figure 7: Relativistic transmission coeflicient T'(v/c) for ¢ = m = h = 1,
0.1.
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Figure 8: Relativistic transmission coefficient T'(v/¢) for electron-electron tun-
neling, electrom mass is m = 1.

Figure 9: Mass dependence of the realtivistic transmission coefficient T'(m) for
electron-electron tunneling, electrom mass is m = 1.
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Figure 10: Relativistic transmission coefficient T'(v/c) for proton-proton tun-
neling, proton mass is m = 1836.






