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ABSTRACT 

Cartan geometry is applied to the plane polar coordinates to calculate the tetrad 

and spin connection elements from first principles of geometry. It is shown that the Cartan 

torsion is non zero for the plane polar coordinates, thus refuting Einsteinian general relativity. 

The latter assumes incorrectly that the torsion is zero. Simple calculations based on the plane 

polar coordinates show that the Cartan torsion is a special case of a more generally defined 

torsion, a special case in which the connections are equal and opposite in sign. These new 

mathematical techniques are applied to rotational dynamics, and it is shown that the angular 

velocity is a Cartan spin connection. 

Keywords: ECE theory, Cartan geometry of the plane polar coordinates, Cartan geometry of 

rotational dynamics. 
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1. INTRODUCTION 

In this series of papers and books { 1 - 10} the ECE generally covariant unified 

field theory has been developed on the basis of Cartan' s well known geometry { 11} in which 

the two structure equations are used to define torsion and curvature. It has been shown that 

Einsteinian general relativity (EGR) is incorrect because of its neglect of one of the 

fundamentals of geometry, the Cartan torsion. In Section 2 the Cartan torsion is calculated 

with the plane polar coordinates, and shown to be non-zero. This simple exercise refutes 

EGR because in any geometry, the Cartan torsion is in general non-zero. It was shown in the 

first papers of ECE theory that the Cartan tetrads can be defined by using any two coordinate 

systems in any mathematical space in any dimension. The original concept by Cartan { 1 - · 

11 } used a tangent spacetime at point P to a base manifold. The tangent spacetime in Cartan 

geometry is a Minkowski spacetime if four dimensional theory is being used. Different types 

of tangent spacetime can be used. By superimposing one coordinate system on another in the 

same mathematical space, tetrads can be defined the most simply. This is done in Section 2 

by using points in the plane polar coordinate system and points in the Cartesian system. The 

analysis is reduced to the simplest possible level by considering a plane. A ':'ector can be 

represented by the plane polar coordinates { 12 - 14}. The tetrad elements are the Cartesian 

components of the vector in plane polar representation. The Cartan spin connection is defined 

by the fact that the axes of the plane polar system rotate with respect to the fixed axes of the 

Cartesian system. Having defined the tetrad and spin connection components the first and 

second Cartan structure equations are used to calculate the Cartan torsion and curvature of 

the plane polar coordinates in two dimensions. The most important result is obtained that the 

torsion is not zero. If the Cartan torsion is not zero on the simplest possible level, then it is 

not zero in any geometry. This spells disaster for standard physics because EGR is based on 

zero torsion. 



-I ~ 

This technique is used in Section 3 to show that the angular velocity is a Cartan . 
spin connection. The latter is therefore fundamental to all the familiar concepts of rotational 

dynamics. As usual the notes that accompany this paper on www.aias.us give a lot of detail 

of the calculations, and should be read in conjunction with this paper, UFT235. 

2. CALCULATION OF THE CARTAN TORSION 

Consider the well known { 12 -14} unit vectors of the plane polar coordinates: 

:fL( -:. (o5, 8 .i_ 1- 5\~g b - (L) 

~e -;._ - Sih-8 i_ -\- C~G ~ -l ~) -
The unit vectors depend on time { 12} and rotate. The unit vectors i and j of the Cartesian · 

system do not depend on· time and are fixed or static. The four elements of the Cartan tetrad 

a. 
q are defined by: 
r 

This is an example of the general definition { 11}: 

The four tetrad components are: () G (I) s.-.-..9 -(s) \i l\ . ~ ( o_s ) ~ J.. ":. 
I 

ld.'l 8 ("d.) tos8 ~ \ -:.. - ~~t\.- I \( d.. - ) 

and the tetrad matrix is: 
(o__s e ~·~e] -{b) ~ 

\J/" -
- si~e {OJ g 

Note carefully that this is also the rotation matrix about Z: 



. 
for any vector V. It follows from Eqs. ( Lr ) and ( l ) that: 

-l~ (~~l ~ r (oj E) Si"ell~ '-J ~] - (~) 
"'f t $i~e c qf & '-f 

__ (,)- '-./ I ""'I(-:>)-::. '-[f I { \ 

\J - ~ ~ ) ) - q_) 
- "f~ ~J.~"ff. 

where: 

so: 

Multiply Eq. ( \\ ) by (oj e and Eq. ( \ d_ ) by -Sin&. It follows that: 

"\J (I) - '\J I (ore 1- 'I ) S• h e I - { u.) 
-q ("J) - -:'\I 1 5o .. G tv • ro_.,e _(t4-) 

which is Eq. ( i ), QED. 

It has been proven that a rotation in the plane XY about Z defines the Cartan tetrad 

matrix and four elements of the Cartan tetrad. 

Define the metric in the Cartesian system by q and the metric in the plane 
~N 

polar system by \c..\. . By_ definition { 11} the two metrics are related by: 

-{\s) 



-1 fc 

The metrics are related to the infinitesimal line element by: 

~s 1. ~ ') . J.,c""' _cl,:' - ( tb) 
J..sJ. ~ ~:\. ~)<-c.. <lx.\ { ll) ::! ( ~ 

so { 12 -14} : ') ) " - ) ) 4 1'1 - \ ~ 
tls. J. = c\_)(._ \- ~y -=- ~ -\- ( w) 

<l? ~ ') \l ~~I l~L I t )""ll d_)<e-:1 J_,_ "\ . - c \. ~) 
In Cartesian coordinates: ( \ 

tl X t ~ J...."Y- l J..)L). ~ d.Y J ) " ~ ) "J. J. ~ 1_ J - d.o) 

and in plane polar coordinates: 

Eq. ( 

From Eqs. ( S ), ( ~ 0 ) and ( ) \ ), Eqs. ( 'J.J.) and ( )3 ) are correct and self 

sufficient. Eqs. ( J.).) and ( l~ ) both give: 

From rotation generator theory { 14}, if: 



-1 I< 

then the operator known as the rotation generator is defined as: 

\ -
l 

C> 

-OJ ) :Jr ~ l; ; J 
-(~t) 

In three dimensions: 

0 (> 

and: c-s"'~J~1-=- 'J'" 
-()~) 

.eJ- C~c l;c_~ 

It follows that { 14}: 

To prove this consider the Maclaurin series: ) J 

(. :'\ ---- e -~-s 8 +-- ·· 
~f \ -s<- e J :- -' + \ )'" - :J ~ ~ -

-:. l-, o o] ,_ eto \ oJ t ~l-o' ~~ :l-=... L{~se 
C) , (.) _, o o '""'' -s'"e 
C) 0 \ 0 0 0 .; ' 0 0 0 0 

Therefore the tetrad matrix is: 

where both sides are matrices in this notation. 

The general structure ofEq. ( )b) is that ofthe derivative of a tetrad, because the 

rotation matrix is a tetrad matrix. The tetrad postulate of Cartan geometry asserts { 11} that 

the covariant derivative of the tetrad is zero: 
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This equation can be expressed as: 

- 0 - (>i) 

a. 
- G.J,...., 

I 

and is a generalization ofEq. (d..{, ). Therefore the rotation generator is a special case of the 

zeta connection defined by: 

The Cartan torsion associated with this process is defined to be { 1 - 11 } 

"' .....---
\ /'N 

~ 

~ \ -r...) 
- c~s:) 

Any orbit in a plane is generated by a connection and torsion of geometry. 

This is a new understanding of all orbits in a plane and originates in the fact that for 

any such orbit: 

It follows that: 

so from Eq. ( b ): 

J.J 
cl si~e 
~ 

G.. 

~~ 
u 

From Eq. ( ~ ':) ) the zeta connection matrix of any planar orbit is: 



Any planar orbit is proportional to the zeta connection, which is a rotation generator 

proportional to angular momentum and related to spacetime torsion. For example, for the 

elliptical orbit { 1 - 11}: 

and the zeta connection elements are: ( "l 

'f Cc) _ '-e ) 
~ \1 - 0 \J.. 

(,) - - ~ (_~: 
~ \J. :J J 

E-< 
The unit vectors of the plane polar system rotate and the Cartan spin connection 

defines the rotation. Denote the basis vectors by: 

By definition { 11} the covariant derivative is defined by ( ) 

\\ c~"\ \ c~) ev Cc..) () ~ - (w"") 
}~ - }Z " r"'~ '/ 

However the ordinary four derivative vanishes because it is defined with a static frame of 

reference. The spin connection is defined to describe the rotating frame. For example: 

and 
0 
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Therefore: . (a.) Cb) -- (\.fl \ 
_ W o(lo)~ ') 

In vector notation: - u./~\•) 5:-e. -(4-~) 

This result is always denoted { 12 - 14} by 

J__~, --tt 
but rigorously it should be: 

~~c(kJ ~ 1- w s_
8
(t)- Cs) 

tAl- st-S:·c. 
It follows that 

a result of basic importance. 

With the definitions { 12- 14} 

-ls)) 

l - g_< ~ g_/) I - ( SJ) 

S2 -=- ~ )'.. g__, - (s~\ 
-e - ' J 

Eq. ( SO ) can be expressed as: 
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a result of basic importance to rotational dynamics (Section 3). Similarly the basic kinematic 

result { 12} : -
can be expressed as: 

So the two spin connection elements of this type are: 
(J.) 

- eu () C) 

All the information needed to calculate the elements of the Cartan torsion is now 

with summation over repeated indices (b). By definition: 

1... (,) - hl 
- J \J () - ~ () 

so the result reduces to: 

Using the relevant tetrad and spin connection elements gives the result: 

~ -:2 !!_ s,._g. - (o) 
Jt --\ O\ 



Proceeding similarly gives the torsion matrix: 

which can be expressed as: 

Therefore: 

(I) • 

\• 
o'l 
( "l) 

\ ol 

{,) - {,) -.-- ---l 0 J. J__ \ 0\ 

(:l) (~) . 
\ To\ To~ 8=--o 

-1 I< 

d._w 0 _, 
-

0 

where the infinitesimal rotation generator about Z is defined { 14} as: 

--d_w J-z -

The final result is that the torsion matrix is proportional to the infinitesimal rotation 

generator: 

l
_C') 

\ o I 

- ('l) 
\ 0 I 

From the tetrad postulate ( 3 '1_) : 
n (a..) 
\ 

/"-~ 

so there exist mixed index connections such as: 

(l) (,) ()) 

~ -d v ~ ' t- w 0 ( ~) ~ \ 

- (b:) 
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-0 
) 

so these mixed index connections are neither symmetric nor antisymmetric for the plane 

polar coordinates, for which the Cartan torsion is in general non zero. This result is alone 

enough to refute any theory of relativity based on zero torsion, notably EGR. The mixed 

index connection of type ( b <6 ) can always be defined as the sum of symmetric (S) and 

antisymmetric (A) components by a basic theorem ofmatrices {15}. The Cartan torsion 

element ( ~ \ ) is defined { 1 - 11} to be: 

1 c:; ~ r (~;(A) r (;: (~ -h0 
(,\~ 

and is always twice the antisymmetric connection T' 01 l ~}So: 

_C) ~ 2r c.) (A\ -(--n.\ 
\ 0\ (}\ ') / 

More generally { 11} any difference of connections such as: 

is a torsion tensor. Clearly, the Cartan torsion ( \\ ) is a special case of the general 

definition in Eq. ( \) ) { 11}. 

These elements of the torsion may be given the appellation "orbital torsion" { 1 - 10} 

in analogy with orbital angular momentum. There also exist "spin torsion" elements such as: 

(,) \ (,) \ . (,) (t) (k>) (\) f~o) 
I "l ~ d \ \i ~ - a;).~ , t w \ (~o) ~ J.. - w Jr~'J o....J \ . 

\ -h0 
The evaluation of the spin torsion for the plane polar coordinates requires the evaluation of 

different spin connections from those used in orbital torsion. From the basic definitions of the 
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it is seen that: 

The infinitesimal line element is defined by: 

Defining: 

(8 - (~o) 
1~ - (~1) 

then: 

~\ ~1 !!-) J_Q -::.. cW fl _(" - --- --__.e. --- ~ ~((e) u 
a a JJJ 

Eq. (l{) may be written as: 
(,') CJ) ~~' !!- .g_6) -(~~ J.._e_ C) ,·. J( . w \ (:)') .e_ -

- ) -- M -----1 JJ 
&..")<-

-(~) so: (,) M} -w \("d) --· u 

Eq. ( ~ \ ) may be written as: 



~e_(,) (t) -1. fr Cl) _(<(~ 
- C0 "l()) ~ 

~ 
~~ 

-(~) so 
( \J - !0 

W I (d.) - __. 
J.J 

Therefore the relevant spin connection components are 

( \~ (,) 
Cu I (6)-=- w :>.C~) 

It follows that: 

I~~ ,_ ~s··._~ _ A._c•sG 
tLr tt(<~) 

in which: 

-("t<t) 

So: 

Similarly: 

T 

so the spin torsion element is antisymmetric: 

--

as it must be by definition { 1 - 11 }, QED. 

In order to evaluate the spin torsion element: 
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new spin connection elements have to bedefined. From Eqs. ( lS) and (1b ): 

and: 

Eq. ( ~ ) is: 

and Eq. ( <\~)is: · 

so the required elements of the spin connection are: 

(J) w (:l) :0- £1) -("\t\ 
Cv \ ( \') -:_ d. ( l) tJv( ' I) 

Therefore: 

(J.) _(l) 
T - - \ 

\"l - ).\ 

The relevant mixed index connections are: ( ~) _ ( ~ q) 
\ c \) ":. J: ~ ( os G ~ \' I ). ) 

\ J.. u ( )j - ( lt>6'\ 
I' ( 1\ ~ _) AJL s•~-.G "'- - \' J\ 1 J 
\ "}\ u 

giving the matrix: 



Therefore the spin torsion elements of the plane polar coordinates are non -zero, a 

result of basic importance that again refutes EGR. 

In general the mixed index connections of type ( \o \ ) are neither symmetric nor 

In a relativistic context the units of torsion are inverse metres, but in this non relativistic 
b < <::,; t-cJ_ 

context th,.torsion is defined to have the units of inverse seconds. 

3. SPIN CONNECTION AND ANGULAR VELOCITY IN ROTATIONAL DYNAMICS 

The result ( S S ) of Section 2 for unit vectors is true for any vector V, because 

any vector can be expressed in terms of unit vectors. Therefore: 

-\-- G.> )<... '[ . - (to£) 

This is the familiar result of classical rotational dynamics { 12}. In plane polar coordinates 

{ 12} the position vector r [_or example is: 

- - ( f( (" -
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so: . 
JA +,A~, " - J....,cj( - " + ev'~e - -- - - -('" -s - - -J1- J1 cU- - ( \o~) 

where2_ is the total velocity. It is the sum of the velocity in an inertial frame ( fr G\rhe_ with 

static coordinates): 

- (to'\) '\/ - l< {(_ 
-5 --<" 

tt 
and the orbital linear velocity { 12}: 

-(110 'io ~ w<"-f._e - VJ "')<_( -

In component format: • -(~~v • 

'./ ~ ~( t- (,..:> )(.. ( - \ ~( -\-(.Q.( - - - -
~ 

We arrive at the important result that the orbital linear velocity is the result of the 

Cartan spin connection in plane polar coordinates. 

From Eq. ( \\ \ ) the acceleration is defined by: 

- ~ ( ~ ~('" + ( tl~,) 
JX ~ cAt ott 

(
'J. A.A a.~. t- ' tl :Jg_ f e -\- -- ---

r jl-' "'-'\ JX ~ "} 

- (llJ.) 

The term in brackets is the acceleration due to the rotation of the frame of reference Itself, so 

is due to the Cartan spin connection. From fundamentals { 12}; 

d_~< ( d - % g___e wR.. 
-e - (u:>) 



so: 

and the inertial or Newtonian velocity is: 

Therefore: 

-
Using: 

the acceleration is: 

in which 

and: 

The complete acceleration is therefore: 



C\ -
and in component format is: ) . ~ 

( 
.. e (\ - , - 'e _, -

The Coriolis acceleration is: 

~ -co( 

and the centrifugal acceleration is: 

ct 
-c~ 

The inertial or Newtonian acceleration is: 

-\-- ~ )<. ( e::_ "X£) 
~ ( \ -;t)) 

-~--- ((e ~ l;6)~e -(t~) 

= ( ( e· -\-- d_; 6) ~I) 1 

-(lJ~J 

We arrive at the important result that all these well known accelerations are due to 

the Cartan spin connection, which in vector format is the angular velocity GV . -
In previous work { 1 - 1 0} it was found that the Corio lis acceleration vanishes for 

all planar orbits: 

a. 
-c~ 

so the total acceleration for all planar orbits is: 

and is the sum of the inertial and centrifugal accelerations. From previous work it was found 

that the inertial accelerati~n of the elliptical orbit is: 

L \ 
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where L is the conserved total angular momentum: 

L ~ ~ J. w : - ( u6
) 

The elliptical orbit is defined by: 

/ 

\ -t- E- (os8 

where ~ is the half right latitude and f: the eccentricity. For the circular orbit: 

\ - c{ 

so the inertial acceleration of the circular orbit vanishes: 

0 

The inertial force is defined to be: 

and this is a general result valid for all planar orbits. 

In the particular case of Newtonian dynamics { 12}: 

\ - (~'l-~ _L• \~..- > 

- tJ '('r...< 'f',....( ~r/...) 

so the inertial force is: 

[rJ - ( ~ 
'('ro...( 

In the received opinion { 12} this result is interpreted as the force of attraction of the inverse 
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square law: 

f 
-~\t-. 

added to a "pseudo-force" defined by: 

This pseudo force is defined incorrectly as originating in an effective potential. However, the 

-
complete acceleration is: 

( 

"l \....). 
a.. \_ ---

---:;1 '"). < J. J.. 
V"r-. '( lf'r..-

where .e \ -------

so the correct sum of accelerations in Eq. (j3~ ) consists of only one term: 

--). ) I 
.,....__ ( CA._ 

and this is a rigorously correct result that originates in the basic definition of acceleration. 

Using Eq. ( \:,0 ) for the angular momentum it is found that the total acceleration 

associated with the elliptical orbit is: 

e 
-r -

and is due entirely to the spin connection, i.e. to the rotation of the axes and of space itself. 

We arrive at the important conclusion that every planar orbit is due to the 

movement of space itself. 



so: 

For a circular orbit: 

--
cl_~~ 

Jl-J. 

-1 I< 

l 
-w 'e - ____., 

~ \ _w-

A solution of this equation is_£, -==- ~ ( b) .9:>( f ( i W t-) _ ( \ ~) 

therealpartofwhichis: ((.e~ c \) ~ 5_ (b) C•S wr- _ ( ~~0 
so the vector r rotates in a circle with angular velocity (..) , which is also the magnitude of the 

spin connection of Cartan. For an elliptical orbit: 

We arrive at the important conclusion that the Newtonian interpretation is untenable 

because the correct total acceleration ( \ 4-\) is interpreted as a force of attraction. It is seen 

from Eq. ( \~<\)for example that the Newtonian procedure adds and subtracts a term: 

L) ~. + ~ " (c.::_ '>'-i.) ~ 2.__ - (1 \0') 
""). (" ) 

"-
from the correct result ( \\;-.s ). The Newtonian theory was devised for the elliptical orbit, in 

which case it gives the result ( \~ l ). This is not a force of attraction, it is the equation of a 

rotating vector, Eq. ( \ \-).). The planar orbit is not due to a balance of attraction and a 

pseudo force, it is due entirely to the motion of spacetime itself and to the Cartan spin 
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connection. The total acceleration of the elliptical orbit is always: 

~ = ~ )J ( ~ -·~) -~, ~ ~ )C l w ~ ') 

which is a special case of the general result for any planar orbit: - ( \4-'\) 

+- ~ ~ (c.::')(_').- (1s~ 

When the angular velocity vanishes, the acceleration reduces to the inertial: 

in which case an object of mass m is attracted to another object of mass M without movement 

of the axes of the frame of reference. 

The traditional Newtonian viewpoint of an orbit is: 

l- '('r.._ '-1 ") -- n-..f!l.~ } - ( l s l) 
_d...- f}..,fl\_&- \-~ _(t s.>) 

< "l~ c") J 

f ~ f_ 'fl-.'f'rJr- +- L "l ) ~< - ( l S4-') 
- ~ <d. ~·(l J / 

and originates in the inertial term. It completely omits the spin connection. In the Newtonian 

viewpoipt the half right latitude is chosen to give an ellipse provided that 

cJ. ~ L J ~ ( 'ss) 
""'~ ffL & 
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