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ABSTRACT

A new wave equation is developed by Lagrangian methods for applications in
celestial mechanics as bart of ECE theory. A method is inferred for the calculation of a planar
orbit for any force between a mass m orbiting a mass M in a plane. Two methods of solution
of the wave equation are given and the self consistency of the method checked in the
Newtonian limit. It is shown that the Einsteinian general relativity (EGR) is one out of an

infinite number of force laws that give orbital precession.

Keywords: ECE theory, celestial mechanics, Lagrangian wave equation, planar orbit for any
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1. INTRODUCTION )

As part of this series of two hundred and forty two papers to date {1 - 10},
Einsteinian general relativity (EGR) has been refuted in comprehensive detail and in many
ways. In order to seek a replacement theory applicable for all observable orbits, a number of
methods have been proposed in recent papers of this series. It has been found that orbital
precession is given by an infinite number of force laws, not just the force law of Einsteinian
general relativity (EGR). For example the Minkowski force gives a precession, and this
process has been animated by B. Foltz on www.aias.us. Any force law proportional to r to the
power n gives a precession, with the sole exception of n = 2, and this precession has again
been animated on www.éias.us by B. Foltz. Essay 80 on www.aias.us lists fifty seven of the
available refutations of EGR, so it is a completely refuted theory, and the preceding papers of
this series severely criticise the dogmatic claims of EGR to be a precise theory.

In Section 2 a wave equation is inferred from a combination of the two classical
Euler Lagrange equations of an object of mass m orbiting an object of mass M in a plane.
These classical equations are used in EGR, despite its claim to be a relativistic theory. So
EGR is not only incorrect in many ways, it is conceptually self inconsistent. This wave
equation can be extended to the Minkowski spacetime straightforwardly, and that will be the
subject of future work, but in this paper the classical limit is examined. Two solutions are
given of the wave equation, one derived by computer algebra by H. Eckardt. This second
solution is tested for self consistency and correctness in the Newtonian limit and applied with
some simple force laws to find the orbit. As far as the authors are aware, this is the first time
that a method has been devised in celestial mechanics to find the orbit for any force law. The
orbit for the Hooke Newton'inverse square law is an ellipse, as is well known. The precessing

ellipse is given by an infinite number of other types of force law. Using this method the



claims of EGR can be tested in another way.

Section 3 is a description of the numerical methods used by H. Eckardt: computer

algebra used to check the hand calculations and used to solve the new wave equation.

2. WAVE EQUATION AND PLANAR ORBITAL SOLUTIONS FOR ANY FORCE.
Consider the orbit of a mass m around a mass M in a plane. The two equations of

motion from a well known Lagrangian analysis {11} are:
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Here F is the force between m and M and L° is the conserved total angular momentum. The

plane polar coordinates are r and 6 . From Eq. (2) in Eq. (1):
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This is a wave equation with structure:
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Under a well defined constraint to be discussed below, this equation is a harmonic

oscillator with period:

and apsidal angle:
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where the angular Velocity is defined by Eq. ( 1 ):
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Therefore the angular coordinate is:
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and can be found for any force.

Eq. ( 6 ) has the solution:
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In order to prove this, note that -Sl is a function of time, so:
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Eq. ( \ ﬂ) is a second order differential equation for the time dependence of _Q
and is a subsidiary or constraint equation that must be obeyed if the solution ( \a) be true.
Eq. ( \4 ) can always be solved, analytically or numerically, so Eq. ( \1 ) is always true.

The second method of solution of Eq. ( 6 ) is due to computer algebra by H.

Eckardt, giving the solution: .
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where A and B are constants of integration which have to be found by further analysis. For
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any curve {11}:
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where A( is an area. Assume that in time T an area Af is swept out. Then in time t an area
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for any curve and any force law.

Define the fmguan ( ]& " {'—\>- 2 _ { DS)

and for simplicity assume that B is zero. Then: b
LT - ( 39
IR NCYE ——]

NPT

and the angular polar coordinate is:
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and can be found for any force law, Q. E. D. For any curve in the classical Lagrangian

dynamics {11} of any planar orbit:
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for all planar orbits.

In the Newtonian limit {1 - 11} the force law is:
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where (i is the half right magnitude of the elliptical orbit:
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where é’ is the eccentricity. It was checked by computer algebra as follows that the result
( ‘Aa\) gives the ellipse ( 5\-\- ) for the Newtonian force law ( 55 ). This is a rigorous

test of the self consistency of the theory. The solution of Eq. ( &‘\ ) with the force law (33 )
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is, by computer algebra:




-1 k.

where y is a constant of integration. If:
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Using Eq. ( 31 ), Eq. ( 3ﬁ ) simplifies to:
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which is Eq. ( }\-\— ), Q. E.D.
So Eq. ( }C‘ ) is rigorously correct for the Newtonian force. Having tested it in this
way it may be applied to other forces and this is done in Section 3.
Eq. ( 3 () ) can be simplified by noting that: (
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where a is the semi major axis of the ellipse {11}. So:
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In the Newtonian theory {11}:
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so the constant of integration x is:

which has the correct units of the square of linear velocity.

The precessing conical section: (
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is found from the force law {1 - 11}
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and computer algebra is used in Section 3 to check this result, giving a precise result for the

precession constant - X | a new result and an advance over previous work. EGR claims that

the force law is: )
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This claim can be tested by using Eq. ( \:\ )in Eq. (a(l) to find the precession of the polar

angle due to EGR, which claims that for a revolution of -A'T\/ : |
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This claim of EGR is based on the same Lagrangian analysis that leads to Eq. ( 6 ), so Eq.

( aa\) must produce the result ( L\'O\ ) if EGR is correct. It is known from Essay 80 on
www.aias.us that EGR is incorrect in many ways.
Finally in this Section the Minkowski force has been shown in immediately

preceding papers to be:

where -_Q_ P and @_ : are the unit vectors of the plane polar coordinate system. The

Minkowski force is the Newtonian force corrected for the Lorentz factor:
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where the velocity appearing in the Lorentz factor is given by the Minkowski metric as:
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SO Eq.(SS ) can be used to find the orbit in the form: : 1
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for any force law. Using Eq. ( ;\‘\‘) in Eq. ( Ac\ ) the true anomaly (or orbital polar angle)
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which is Eq. ( 1 ) Q. E. D. So the theory of this section is rigorously correct and self

consistent and is a new and powerful method of celestial mechanics.

3. COMPUTATION OF ORBITS FOR SELECTED FORCE LAWS.

Section by H. Eckardt.
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3 Computation of orbits for selected force laws

Before considering the orbits emerging from the force laws we calculate the
apsidal angles for some cases. The apsidal angle is defined by Eq.(9) and can
be written with aid of (7), (8) and (60):

= Lo (61)
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The results are presented in Tablel. In most cases the apsidal angle depends
on the radius 7. To find a reasonable value for r we calculate r for the case
¢ = m. The apsidal angle is constant only for the 1/r3 force law which gives
a precessing ellipse of canonical form. For higher exponents r varies as well as
for an exponential and even a constant force law. The same holds for a radially
oscillating force.

In the following we apply Eq.(29) to some force laws to obtain the orbital
function 6(r) in the most general way. With the general result (32) this fuction
can be written
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with
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where Q2 is given by Eq.(7) and A and B are constants of integration. Inserting
the force law of a precessing ellipse,
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Force law Apsidal angle

Radius for v =7
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Table 1: Apsidal angles ¥ and radii for 1) = 7 for several force laws.

leads (by computer algebra) to the orbit relation
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we can utilize the relation
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so that we arrive at the standard orbit of a precessing
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ellipse:

The remaining constant A is related to the physical parameters via Eq.(66):
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The constraint that the square root in € has to be real valued, leads to the

restriction
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In case of equality we have a circular orbit. The limit of a parabola (¢ = 1) is
reached for A = 0, and the orbit is hyperbolic for A < 0.
The orbit of the precessing ellipse is graphed in form 6(r) and df/dr in Fig.
1 for comparison with other force laws. The vertical tangents at the return
points of r are significant.
Next we inspect the Einstein force law
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It follows from Eq.(62) that the integral is not solveable analytically, it must be
evaluated numerically. The orbit is given by
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The Minkowski force law is
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The orbit can be calculated first in the approximation of a constant relativistic
~ factor which is defined by
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with v being the absolute value of the orbital velocity. Assuming a near-circular
orbit may justify the approximation v ~ const. This results in an orbit
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The result is a precessing ellipse which is “deformed” compared to the canonical
case of Eq.(65), see Fig. 2 in comparison to Fig. 1.

When the correct form of v is to be taken into account, we have to use an
expression for the velocity. Here we took the approximation from the notes of
paper 238:

(79)
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so that we have a radial dependence only. Then the function f(r) can be
evaluated. The structure of constants is so complicated that we only give the
expression used for the plot, the integrand of Eq.(29):
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This integrand represents df/dr and is shown in Fig. 3 as the red curve. This
function has been integrated numerically to give the blue curve. The graphics
can directly be compared to Fig. 2 for the constant gamma case. One sees that
6(r) behaves differently at the lower r boundary, a clear relativistic effect.

It should be noted that the parameters in the formulas were experimentally
adopted for the graphs in such a way that the results were comparable. In
addition they were chosen so that bound curves came out (no hyperbolas etc.).
It would take a greater effort e.g. to set the integration constants in a way that
the same physical system is described in all cases.
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Figure 1: (r) and df/dr for a precessing ellipse with e = 0.3, = 3,2 = 1.1.
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Figure 2: 6(r) and df/dr for the Minkowski force with adopted parameters,
¥ = const.
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Figure 3: 6(r) and df/dr for the Minkowski force with adopted parameters,
numerical solution.
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