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ABSTRACT 

The ECE fermion equation is equivalent to the chiral form of the Dirac equation 

for some applications, which are illustrated in this paper by the inference of three new types 

of resonance spectroscopy from a the well known hamiltonian describing the interaction of an 

electron with the classical electromagnetic field. The three new types of spectroscopy are 

illustrated using the well known hydrogenic wavefunctions, correctly normalized with 

computer algebra. It is found that each new type of spectroscopy gives its own pattern of 

resonance frequencies characterized by the hydrogenic wavefunction being used. 
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1. INTRODUCTION 

In the preceding paper of this series { 1 - 1 0} the ECE fermion equation has been 

developed to give the new technique of electron spin orbit coupling resonance. The same 

techniques of using well known Pauli algebra in a different way are used in this paper to give 

three new types of spin resonance spectroscopy, which are illustrated with the hydrogenic 

wavefunctions correctly normalized with computer algebra. It is found that that each new type 

of spectrum has its own pattern of resonance, depending on the hydrogenic wavefunction 

used. In Section 2 the relevant part of the hamiltonian is defined for the interaction of the 

ECE electron with the classical electromagnetic field, and this is developep with original use 
I 

of Pauli algebra as in the preceding paper. It is found that the hamiltonian results in three 

hitherto unknown types of spin resonance spectroscopy. These are developed with the 

hydrogenic wavefunctions, which are correctly normalized with computer algebra. In Section 

3 the spectra are illustrated with computer algebra, and in theory give rise to different patterns 

of resonance for each hydro genic wavefunction. 

2. DEVELOPMENT OF THE HAMILTONIAN AND EXPECTATION VALUES OF 

ENERGY. 

Consider the relevant part of the complete hamiltonian { 1 - 10} of the ECE fermion 

equation: 

~\ - tL (o-·f u .A+ o.A IT ·f 
)rr. 

where -e is the charge on the electron, m its mass, p thelinear momentum of the electron and 

A the vector potential of the electromagnetic field in the standard approximation. In ECE 

physics A is greatly developed { 1 - 10} and this development will be incorporated in future 
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papers. Note carefully that Eq. ( 1_ ) is the well known hamiltonian usually developed into . 
the Zeeman effect, ESR, NMR and MRI. The new t)pe of development given in this and the 

preceding paper is based on the Pauli algebra given by Merzbacher { 11}: 

() . ( 0. {' 6" r ~ - --- --(";) 

c~- ·_t (5' . \ -\- l u -- . ~~s_) -(:l) 
( ') 

Cf • l - (s_ . i + - -;). ( 
where the classical orbital angular momentum is defined by: 

L -

I! • ~) 

-(~) 

Therefore r is the position vector, which does not appear in the usual development of the 

Zeeman effect and ESR. 

The hamiltonian ( .1. ) is quantized using: 

~ - ~ ~ ( v . v ~ . B_ + ~. A ~ . y_) 1 -(lr) 

where{; is the reduced Planck constant and 1 the wavefunction. Note that {II}: 

.. ...P- (e ·'' ~t < R . .e J -=-~ <.L 
-
(.D -~h , "' _ -( -r- __ \ 

' -:- - - \ Jr ( ti!' 

where the radial unit vector is defined as: 

( t) 
:B-~ ' -:::. ---f 

Similarly: 

B-) A 0 . \ (i-·fl + 0 . \)<.._ h) 0 - - --- J, 
{ 
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For a uniform magnetic field: 

-(~ A - j__ B X\ - - " -- ~ 

in which case: - c~) ( A - 0 --- -
and: ,~A -C'0 A o·r 6' -0 - . 

• ---- ) - ( 

and that: 

It follows that: \ 

~.fa-. A f "~. ~~ (t of + ~ r ~ 
where the modified magnetic flux density is defined by: 

The hamiltonian ( lt ) can therefore be defined as: 



giving three hitherto unknown resonance spectroscopies. 

The conventional development of the hamiltonian ( 4- ) is well known, and 

misses out the information given in Eq. ( \ b ): 

~~ ~ l~ (~·(~~)+ !i·'I-f) -(\~ 
- 4_ ~r.-· ( Q X ( Ei ~) 4, f\ X ~ 1 . 

::ln-€_-t q: . g t ~·{f. (( >J ·A \f + 1 \! f· A 
-- c:l~ ) 
~~ 

using the standard approximati~: -::. :::J )<... !J_ • ~ ( l ~) 

-
More details ofthese calculations are given in Note 251(1) on www.aias.us. 

As in Note 251(2) on www.aias.us it is possible to identify three different types of 

hamiltonian: 

whose energy expectation values are: 



where integration takes place over all space with the Born normalization { 11 } : 

1 rr~f kc ~ 1_. - c~>) 
The energy expectation values can be illustrated on the simplest level with the hydrogenic 

wavefunctions. These are correctly normalized with computer algebra and the first few 

tabulated in Section 3. The method is illustrated in all detail in Note 251(3) and some details 

of the principles given here for the hydro genic wavefunction: 

- J_r ( ~\ 1 N x ~ - \_ ::lb_j 

If the :•gnet~c fi;d iso aligne~ i~ Ben: 0 • ( "" ~1. ( 7.., J. 0 + ( z o.~ + X 7 6:~ 
o • \) - -z. \)-z L..l "Z. - - \ 1. r 

- I < ') < ';) - ()I) 
However the only well defined component of spin angular momentum in quantum mechanics 

is { 11}: 

so the only term of relevance in Eq. ( )l) is: 

£ . ~ \ - ( \ . ( ~ )J) 
In spherical polar coordinates: 



The spin angular momentum operator is defined { 11} as: 

s Co .Lf ;i -l3'*\ 
- 2 - ) 

from;c~~sp~~:bit~era~I(S(~o+0 -~ (f + 0 -s(s + 011 -(' 
- - 'l J. ) 

where the Clebsch Gordan series gives: 

· 0 -t-s ,€ts- t ~ ·· J - ~ ) ) ) 
Yh_ . ~ Vh. + ~5 . 

J J(_ 

/-e-sl -lJ9 
-(31_) 

In these expressions: 

o'ZJ ~ l~ ~J -(38) 

and spin resonance can be induced between the states of 0'4 . The three different types of 

resonance spectra are: 



In computing Eq. ( ~\)use is made of the Clebsch Gordan equation ( 31) as described in 

Section 3 so the wavefunction corresponds to the quantum numbers in the correct way. In 

each case the resonance frequencies depend on the wavefunction being considered, leading to 

three new types of richly structured spectroscopies and opening up a new area of 

computational quantum chemistry. 

In spherical polar coordinates: 

In note 251(5) on www.aias.us these results are distinguished carefully from the Zeeman 

effect, which is described by: 



I 
where g is the well known Lande factor { 11}. The Zeeman effect is derived from the· 

L 
standard development of the hamiltonian ( 4- ) and gives an entirely different spectrum. 

Some sample hand calculations are given in Notes 251(3) and 251(4) using the useful 

definite integrals: f. ct> ' 1\ (_- q.-J.A 
\ - (4-t) - h· 

_____..-:--
~ +\ 

ct. 

-C~J 1._ (- ~J~ f b'l\ (6.S"' e si~-.B Le - + 
t'\ + 1. 

. 1 0)1\(0J J_ f Jf - rrr. - (4-<i) 
Two examples suffice to end this section, using one of the simplest types of hydro genic 

wavefunction: 

where N is the normalization: 

and in spherical polar coordinates: 

X 

The energy expectation value is: 

e;[ 0"2. ~~ ( 

~"" 
and one of the integrals to be evaluated is: 



Obviously, hand calculation becomes impractical very quickly, so the energy expectation 

values given in Eqs. (~~ ) to ( 4-\ ) are evaluated by computer algebra in Section 3 and the 

results tabulated. 

Therefore: 

1 
'c "l .._ - e_ f tJ 0 -z. ~z 

)~ 

Using the standard integral: f s•h-4-e!e 
it is found that: 

3 e _ sc~ )JJ 
- T -4-



In these calculations: 

f ~ (.e_- ~Jc L- -

For this particular wavefunction it is found that: 

but as shown in Section 3, the energy expectation valu~are non zero in general, giving a ~ew 

type of spin resonance spectrum. 

3. COMPUTATION OF ENERGY EXPECTATION VALUES OF THE HYDROGENIC 

W A VEFUNCTIONS, AND RESONANCE FREQUENCIES. 

Section by Dr. Horst Eckardt. 
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3 Computation of energy expectation values of

the Hydrogenic wave functions, and resonance

frequencies

The expectation values of energies E1-E3 de�ned in section 2 (Eqs.(31-33))
are evaluated by computer algebra. The operator σ · L is replaced with the
quantum number eigenvalues as given by Eq. (41). Basis of evaluation are
the analytically given Hydrogen-like wave functions as used in paper 250. The
constant factors of the energy eigenvalues have been compiled in the following
list, extended by their numerical values in electron Volts (eV ). To obtain the full
energy expectation values, the results listed in the tables have to be multiplied
by these values.

E1 = E2 = − e ~
2 m

σZ BZ = −3.63695 10−4 σZ BZ , (62)

E3 = −E1. (63)

The frequencies factors in Hz (Eqs.(39-41) then are given by

ω1 = ω2 = ω3 =
e BZ

m
= 1.75882 1011 BZ . (64)

From Table 1 it can be seen that E1 and E2 give only minor corrections of
spectra as expected. In Table 2 the energy eigenvalues E3 have been listed. In
contrast to Table 1, these energies depend on the relativistic quantum numbers
which lead to a common factor

Fj := j(j + 1)− l(l + 1)− s(s+ 1). (65)

It can be seen that this factor changes sign so that corrections in both directions
appear. The corrections are small again according to Eq.(63). The spectral
energy di�erences (Eqs.(39-41) of section 2) are in the range of 1011 Hz and
therefore detectable.
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n l ml E1 E2

1 0 0 2
3 −1

2 0 0 2
3 −1

2 1 0 2
5 −3

5

2 1 ±1 4
5 −6

5

3 0 0 2
3 −1

3 1 0 2
5 −3

5

3 1 ±1 4
5 −6

5

3 2 0 10
21 −5

7

3 2 ±1 4
7 −6

7

3 2 ±2 6
7 −9

7

Table 1: Energies E1 and E2.
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n l ml j s ms mj Fj E3

1 0 0 1/2 1/2 -1/2 -1/2 0 0

1 0 0 1/2 1/2 1/2 1/2 0 0

2 0 0 1/2 1/2 -1/2 -1/2 0 0

2 0 0 1/2 1/2 1/2 1/2 0 0

2 1 -1 3/2 1/2 -1/2 -3/2 1 4
5

2 1 -1 3/2 1/2 1/2 -1/2 1 4
5

2 1 0 1/2 1/2 -1/2 -1/2 -1 −2
5

2 1 0 3/2 1/2 1/2 1/2 1 2
5

2 1 1 1/2 1/2 -1/2 1/2 -1 −4
5

2 1 1 3/2 1/2 1/2 3/2 1 4
5

3 0 0 1/2 1/2 -1/2 -1/2 0 0

3 0 0 1/2 1/2 1/2 1/2 0 0

3 1 -1 3/2 1/2 -1/2 -3/2 1 4
5

3 1 -1 3/2 1/2 1/2 -1/2 1 4
5

3 1 0 1/2 1/2 -1/2 -1/2 -1 −2
5

3 1 0 3/2 1/2 1/2 1/2 1 2
5

3 1 1 1/2 1/2 -1/2 1/2 -1 4
5

3 1 1 5/2 1/2 1/2 3/2 1 4
5

3 2 -2 5/2 1/2 -1/2 -5/2 2 12
7

3 2 -2 5/2 1/2 1/2 -3/2 2 12
7

3 2 -1 3/2 1/2 -1/2 -3/2 -2 −8
7

3 2 -1 5/2 1/2 1/2 -1/2 2 8
7

3 2 0 3/2 1/2 -1/2 -1/2 -2 − 20
21

3 2 0 5/2 1/2 1/2 1/2 2 20
21

3 2 1 3/2 1/2 -1/2 1/2 -2 −8
7

3 2 1 5/2 1/2 1/2 3/2 2 8
7

3 2 2 3/2 1/2 -1/2 3/2 -2 − 12
7

3 2 2 5/2 1/2 1/2 5/2 2 12
7

Table 2: Energies E3 with Fj = j(j + 1)− l(l + 1)− s(s+ 1).
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