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ABSTRACT 

The hamiltonian structure of the ECE fermion equation is used with a well known 

but hitherto unused Pauli algebra to produce novel results including the magnetizability of the 

hydro genic orbitals, and novel spin orbit terms. All of these results should produce 

observable new spectroscopies. If these spectroscopies are not observed experimentally 

quantum mechanics would become self inconsistent at a fundamental level. The way in which 

these results translate into particle collision theory is illustrated by an example. 

Keywords: ECE theory, ECE fermion equation, novel use fo Pauli algebra, magnetizabilities 

of the hydro genic orbitals, novel spin orbit coupling spectroscopies. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 1 0} a well known { 11 } Pauli algebra has been 

incorporated into the ECE fermion equation to produce several novel spectroscopies, each of 

which should be observable experimentally. The same type of theory can be used in particle 

collisions and scattering, and in low energy nuclear reactors. In Section 2 of this paper the 

novel use of Pauli algebra with the fermion equation is used to produce several more classes 

of results from each relevant hamiltonian. The energy expectation values for the hydrogenic 

orbitals are given in Section 3 using computer algebra. The first type of hamiltonian 

developed with this method produces the magnetizability of each hydro genic orbital 

considered, giving a range of novel results. The way in which the theory translates into 

particle collision theory is exemplified. Three classes of new spin orbit hamiltonian are 

identified by applying this method to the usual spin orbit hamiltonian with novel application 

of Pauli algebra. The energy expectation values from each class are evaluated in Section 3 by 

computer algebra for the hydrogenic orbitals. These energy expectation values should be 

observable experimentally, otherwise quantum mechanics becomes internally self 

inconsistent. This methodology will be developed in several ways in future papers. 

2. EVALUATION OF THE HAMILTONIANS 

The complete hamiltonian being considered systematically term by term is: 

o · (J -~A~1 
-(t) 

in a semi classical theory where the electromagnetic field interacts with the hydrogen atom. 

The charge on an electron of a given orbital is -e, its mass is m, and for each polarization 



index of ECE theory the scalar and vector potentials of the electromagnetic field are 

respectively 1 and A. The SU(2) basis i~ used with the P~i matrices tf' tls basis · I - . ~ -
elements. The linear orbital momentum of an electron is p and the wavefunction is denote~ 

In deriving this hamiltonian a non relativistic approximation is used: 

) 

and it is assumed that 

Some terms of the hamiltonian ( i ) have been developed in immediately preceding pape~s 

using the well known { 11 } Pauli algebra: 

0. ~ -
() . r (:_. p t -- -- (') 

where r is the position vector of the electron of an H atom orbital, and L is its angular - -
momentum: 

l ' 7<-. f . - ( s) -

The spin angular momentum operator is defined as usual: 

(b) s - j_ i: 0 ,.. 
,...-- cl -

We first consider the term: 

h) 
~\ ~ 

~ cr- . r u- . f 1 - - - -
:l~·. -- --

which is the kinetic energy of the electron in the SU(2) basis. From Eqs. ( ~ ) and ( l ): 



Therefore: 
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to find that Eq. ( l ) is: 

The laplacian in spherical polar coordinates is: 

\J) JJ "- __~_l_ (/ID + ~ . )._ S<k ~H_ 
' 1 <) d( df" j < s,.._e dO d ~ 

and the spherical harmonics are defined { 11} as: 

L) Y~ , e(£+0-t:l y; _(";}0 

1 ~ y; -( :10 Therefore if: 

the first combination of terms in Eq. ( 

therefore: 

\ q ) . ·. h -
IS t e laplacian term. The overall result is 



+ .L 

where 

The spherical harmonics are part of the hydrogenic wavefunctions and Eq. (~)is expressed 

in spherical polar coordinates. It can be written as: ) )1 -(:l4 
- t "l 6' • " u . 'J r.-1 0:. - .r -'J \ /1 .!. 
-- - - - - -L :J ( ~)L +-_L -\- ~f"l (i(~t~-.€(€+0-s(s~lJ) dt" . ..-. 
~~( 

di~ing~w~(:'(io~~~b~;(;:i0val~(Ht~ t ~ ~ ~t ~~) 

[:ct:= _t,:.....;---"l ()(jlr) _£(R+0 --r(H0) f fi<~ t {t -(-:i) 
)~ 

A more rigorous development for the hydrogen atom would use the hamiltonian: 

~) f ~ ( ~ f +- -t_ "·1 o- ·J_) f - (n) 

in a non relativistic approximation. The usual Schroedinger hamiltonian in the H atom is: 

\ --
f:) «\1) ~ "l -_ 17:Jg) ~~-:- l 
)~ 4-'IT f c> r 

where the interaction between the electron and proton is given by the Coulomb potential in 

which t0 is the S. I. permittivity in vacuo. Eq. ( ':)~ ) gives the well known hydrogenic 
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wavefunctions instead ofthe spherical harmonics. Eq. ( l) ) is therefore extended to: 

1 'l 1 rt · (s. L 
\4~"h-=- -:L ~ f _z r -r-;: -· ; 

. T :l '1\-. "-t1r t-o ( 

which has to be solved numerically 

The next term to be developed using Eq. ( lr ) is the term quadratic in the 

potential: 
- -=---~~ !: . J3_ ~. ~ cf. -(~0 

)Vh 

Now note that: (~-B._ -\-i ~ -~x£)-{:~ 
A ·- 0 • ( 

o· - -- -- - ') 
( 

· ~xB).-(>:t) 
( £. !l)Jj o·\ (~·B_ - \ 0 

- - --.-------:) 
( 

For a uniform magnetic field: 

A -
and 

r . A --

Therefore the hamiltonian ( 3 () ) can be developed for real A as: 



which is quadratic in the magnetic flux density B. For simplicity of argument assume that: 
-

where the volume element in spherical polar coordinates·is: 

a_ --c -=- < )s,·" e tc ~B ~ - ( 4-0 



Therefore: 

Jrr !11 

{Jo f* < 
4-(1-c·/~s,.hG f ~_qe ~ 

r ,. . ~ ~ . < , • ~ ( 4-~) 

"f -::. !:::.- t ( 1- C•s S•~ 

'llr.. 1'"-. h ("-. . - ( 4lt) 
[ ~ )0t~ -(45) 

The energy: 

can be used in second order perturbation theory in a novel way. 

This type of theory can be translated as follows into particle collision theory. 

Consider conservation of energy and momentum in the collision process: 

_ (4G) G + ~, I 

+-
'\; ,, - \: 

~~I I It - (4-t) ~ - ~ +f - -So the translation occurs as follows: - ( 'r'\) 
~ \ 

eA ~\ e-f -
Consider now the kinetic energy hamiltonian: 

-(lr~ 
H(, cf _L 0 • ~\ l) ·~ f - .,...-

~rr. 

and let: {s~ \ . 
~· :X~ -

f \ --- ) --
in analogy with: 



\ -- ~ -· 
~ - . 

Therefor~1s the gravitomagnetic field of the ECE engineering model { 1 - 1 0}. The angular 

momentum associated with J ' 1s: 

-
Note that: 

\ 

~ 

l- f • 
:l 

- ( 

-

--
The Z axis angular momentum in spherical polar coordinates is: 

L\L ~ \ ')~<. (\-c~s)~ (s~j 

- ~\ (.) - ( 5~ so: 

-

where ~\is the mass of the particle with momentum ~ \ . Here: 

w-:- ~s -_ (s1.) 
~ 

is the angular velocity of particle 1, the particle with momentum p 
-\ 

From Eq. ( \;-~ ): 

\ -
~~ 

( ~~ ~) (~ ·£)(~·J~f -(~j --

and if: 

(s~ 



the hamiltonian is: 

~~w1 cJ'(\ c6/e)1-(s"') 
.,..,.., 

whos~:rgy expecilltion ;?' :\- t * ( \ -( 6/ e) / f ~~ 
~~ _ {bv\ 

If f are the hydrogenic wavefunctions then E(,are the energy levels of an H atom J 
interacting with a particle of momentum p and angular momentum L given by Eq. ( 5d. ). 

-\ I 

The conventional spin orbit term of the hamiltonian ( .i )"i; { 1 - 11 } : 

_ c.? ~ · ~ CJ • ~ f _ ( £1) 
\: - R_.f +- ~c "l 

where the Coulomb potential: - (r;}) 

is used to describe the attraction between the electron and proton of the H atom. In the non 

relativistic approximation: 

Eq. ( b \ ) becomes: 

..... -
0. f --

and the spin orbit hamiltonian becomes: 

-
Now use Eq. ( ~)in Eq. ( 'S) to find the novel hamiltonian: 

0. ~ -



severa new spectroscop· IeS. which gives 1 

where 

The first class of novel spectroscopy is based on· 

- fl ~ ") ~. !_ ( b ~ ·J_ f \ - {tl'l 
\.rV\.. 0 ( ) / 

l · ~ ~ - - ,·f: r }:L - { bi) 
- -! )f"" 

in the operat ·. or representatiOn { 11}. So: \~ <\ i ~ -i ~ -e-~- l__ ~ 5_ ·y_ f -( £4\ 
1. J J dr < :J 
~V').... v 

Now use: 

0 -~~·~- ~-~ +~~- ~ 
-

so: 

-



According to the B~m interpretation of quantum mechanics th . ese expectatiOn values 

are observable. If they tum out to be unobservable . . quantum rnecharncs wo~' have develo ed 

a deep mternal self inconsistency. p 

The hydro genic wavefunction is { \\ } : 

f ~ Rt\e_ ( 0 ~~{e) f) -h') 
so an integral such as ( l t) is: 

in which: r;b 

'(~) ~ 
:} 

Q~e_ ~ -

' 0 

where: 



is the Bohr radius { 1 - 11}. Here n is the main quantum number, 1 is the angular momentum 

quantum number. These analytical results are confirmed numerically in Section 3. It is seen 

that the energy tq\ diverges to infinity for S orbitals but is otherwise finite. 

The main spin orbit hamiltonian ( (k ) can be split into the following four 

hamiltonians, each of which gives a novel spectroscopy in general: 

\ \ 1 ~ 3 ~ . ~ (h £ . _i_ t 
t1\o ") 1 - ":l 

\.rV\.. c , ~ r . P _ ( il) 
L.e o-.L ~ - . 

- \...t ( • p ( ") - -

~"': ~ ~ !--~ "-=- 1.--i-::-( ~ ~.~f)- (<gj 
'- ~ ') ~ 
'"t"V\... (..._-

In the remainder of this Section these are evaluated systematically, and their hydrogenic 

where: 

--
Therefore: 

where: 



and: 

Using the Coulombic potential ( 0 Q ) . 0 0 gtves: 

I~ n i "' ~ t-_ !: · ~ L JA- - (c-~~"~ 
4-n-., c} ( d,.- J 

whose hydro · ( ll gemc energy expectation values are: - ") 

lu -=- - ~~ (i (j-1-~-e{-ftt)-s(s-t)) 1'_ J__±_ t\_-r 
t(;rr E-."' v ( ., d ( 

where: 

and: 

The second class to be considered is: 



~ · ~ 1 -c~v 

t i !_ • !::_X k) f 
Using the operator representation ( l \ ) gives the hamiltonian: 

).f: J (:)_ d ~ t 0 -s ( i + 0 + 5 (s + 0 r 
\~ \.) 1 .,_ z '). ") 3 ! t\. 

\~~for...,~'(" -(~~ 

These are evaluated by computer algebra in Section 3. 

The third class derives from: 

'\1 f", e -~·~ !L~·L"f r \:t ~ - l < :> '-tV\... G 

using again the operator representation ( ~ ). So: 

The fourth class derives from: 

in which the operator representation ( '\ ) is used twice, so that: 



Now note that 

follo;:\bi ~ -~ r (~~ ¥- 1- i; ~;7.J -(!oj 
'-\:- V\... C/ 

Therefore this class of hamiltonian is: 

The fifth class derives ~o~ 
0 

. ~ ( c/< ' ~ . _r rJ _ { l ,_s J 
\~ \\ ,_ "II ~ ., -, J 

~ "\ \, ") ") 

"""~ v 
in which the functional representation is used: c\ 

I_ . ~ - ~ . ~ !: . _f - t. ~ • ~ - (I o~ 
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rather than the operator representation ( q ). This method gives: 

~-~(..L~·~i 
"") ) (') 

~i\... v 
which is the same as Eq. ( ~ S ) except for a sign change. The sixth and final cla;s 

considered here derives from: 

in which the functional representation ( l Db) is used. This method gives the same result as 

Eq. ( ~~). 
The three distinct types of spin orbit hamiltonian to emerge are as follows. Class I 

IS: 

~-I ~ -(ibj 
~\, i 

).tJ ~ 
-~ - df" ' d (' . -- ') ') 

'd 
.,....;--

l~'\f t-o~ 0 
( 

Class II is: 

( s L i 1 ~) - e ( e +~ - ~ (s * ~~ 3 f ~a. 
~).() 

HlL 1 }<"' 
-=-

(u~ "l "') 
l (, tf\ f-o )'\... v 

algebra in Section 3, analysed and tabulated. 
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3. EVALUATION OF ENERGY EXPECTATION VALUES 

Section by co author Horst Eckardt 
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3 Evaluation of energy expectation values

In this section the expectation values of energies de�ned in section 2 are evalu-
ated by computer algebra. Basis are the analytically given Hydrogen-like wave
functions as used in papers 250 and 251. In general, integration of expectation
values of rn give results in factors

⟨rn⟩ ∝
(a0
Z

)n

(112)

where n can be a positive or negative integer. a0 is the Bohr radius and Z is
the ordinal number of the Hydrogen-like orbital. Normally the latter should
be set to 1 because no multi-particle interactions are contained in this simple
analytical form of wave functions. The constant factors of the energy eigenvalues
have been compiled in the following list, extended by their numerical values in
electron Volts (eV ). To obtain the full energy expectation values, the results

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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listed in the tables have to be multiplied by these values.

E1 =
~2

m

Z2

a20
= 1074.26Z2 (113)

E2 =
~2

2m

Z2

a20
= 537.131Z2 (114)

E5 =
e2 B2

Z

8m

a20
Z2

= 6.15650 10−11 B2
Z

Z2
(115)

E6 =
m1

2 ω2

8m

a20
Z2

= 2.39835 · 1027m
2
1ω

2

Z2
(116)

E91 =
3 ~2 e2

16π ϵ0 m2 c2
Z3

a30
= 0.0429045Z3 (117)

E92 = − ~2 e2

16π ϵ0 m2 c2
Z2

a20
= −0.0143015Z3 (118)

E10 = − ~2 e2

16πm2 c2
Z3

a30
= −0.0143015Z3 (119)

E11 = − ~2 e2

16π ϵ0 m2 c2
Z3

a30
= −0.0143015Z3 (120)

E13 =
~2 e2

16π ϵ0 m2 c2
Z3

a30
= 0.0143015Z3 (121)

EI = − ~2 e2

16πm2 c2
Z3

a30
= −0.0143015Z3 (122)

EII =
~2 e2

16π ϵ0 m2 c2
Z3

a30
= 0.0143015Z3 (123)

EIII =
~2 e2

16π ϵ0 m2 c2
Z3

a30
= 0.0143015Z3 (124)

It can be seen that E1 and E2 give remarkable energies up to the keV range.
These are reduced by a factor of 10 to 100 (see the following tables), but com-
pared to the orbital energies these splittings are huge. The energies of the other
energies come to lie in the range of 1/100 eV , leading to minor corrections of
spectra as expected. Nevertheless they should be observable by sensitive spec-
trometers.

The energy eigenvalues have been grouped to three tables. In the �rst table,
those depending only on non-relativistic quantum numbers n, l, ml are listed.
In the second table, those with the common factor

Fj := j(j + 1)− l(l + 1)− s(s+ 1) (125)

are shown and in the third table those with

Fj := 2 l(l + 1)− j(j + 1) + s(s+ 1). (126)

Thus the e�ect of Fj can be seen, in particular where this factor forces the energy
eigenvalues to zero. In Table 1 the integrals for E5 and E6 are identical, however
their e�ects are quite di�erent. E5 leads to a tiny correction of the Zeeman
e�ect quadratic in the magnetic �eld, producing a magnetizability of orbitals
(Eq.(44)), whereas E6 is a correction due to mechanical rotations (Eq.(60)). E10

2



n l ml E5|E6 [
a2
0

Z2 ] E10|EI [Z
3

a3
0
]

1 0 0 2 −5

2 0 0 28 − 9
16

2 1 0 12 1
48

2 1 ±1 24 1
48

3 0 0 138 − 13
81

3 1 0 72 1
81

3 1 ±1 144 1
81

3 2 0 1 60 1
405

3 2 ±1 72 1
405

3 2 ±2 108 1
405

Table 1: Energies E5, E6, E10 and EI .

and EI (from Eq.(109)) have the same factors, leading to similar corrections.
These are particlularly signi�cant for the 1s orbital.

From the �rst table with relativistic quantum numbers (Table 2) it can be
seen that E92 gives no spectral corrections at all. The integral (Eq.(75)) vanishes
for all orbitals. E91 and EII are not de�ned for s-like orbitals. As can be seen
from Eq.(110), the �rst term of the integral produces an expectation value of
1/r3 which diverges for s states. The second term is identical to E92 and gives
no contribution. E1 and E2 give only contributions for l ̸= 0.

The energy expectation values of E13 and EIII are identical as can be seen
from Eqs.(121,124) and Table 3. The integrands are the same as for E91, leading
to diverging integrals for s-like states.
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n l ml j s ms mj Fj E1 [Z
2

a2
0
] E2 [Z

2

a2
0
] E91 [Z

3

a3
0
] E92 [Z

3

a3
0
] EII [Z

3

a3
0
]

1 0 0 1/2 1/2 -1/2 -1/2 0 0 0 � 0 �

1 0 0 1/2 1/2 1/2 1/2 0 0 0 � 0 �

2 0 0 1/2 1/2 -1/2 -1/2 0 0 0 � 0 �

2 0 0 1/2 1/2 1/2 1/2 0 0 0 � 0 �

2 1 -1 3/2 1/2 -1/2 -3/2 1 − 1
24

1
12

1
24 0 1

8

2 1 -1 3/2 1/2 1/2 -1/2 1 − 1
24

1
12

1
24 0 1

8

2 1 0 1/2 1/2 -1/2 -1/2 -1 1
24 − 1

12 − 1
24 0 −1

8

2 1 0 3/2 1/2 1/2 1/2 1 − 1
24

1
12

1
24 0 1

8

2 1 1 1/2 1/2 -1/2 1/2 -1 1
24 − 1

12 − 1
24 0 −1

8

2 1 1 3/2 1/2 1/2 3/2 1 − 1
24

1
12

1
24 0 1

8

3 0 0 1/2 1/2 -1/2 -1/2 0 0 0 � 0 �

3 0 0 1/2 1/2 1/2 1/2 0 0 0 � 0 �

3 1 -1 3/2 1/2 -1/2 -3/2 1 − 1
81

2
81

1
81 0 1

27

3 1 -1 3/2 1/2 1/2 -1/2 1 − 1
81

2
81

1
81 0 1

27

3 1 0 1/2 1/2 -1/2 -1/2 -1 1
81 − 2

81 − 1
81 0 − 1

27

3 1 0 3/2 1/2 1/2 1/2 1 − 1
81

2
81

1
81 0 1

27

3 1 1 1/2 1/2 -1/2 1/2 -1 1
81 − 2

81 − 1
81 0 − 1

27

3 1 1 5/2 1/2 1/2 3/2 1 − 1
81

2
81

1
81 0 1

27

3 2 -2 5/2 1/2 -1/2 -5/2 2 − 2
135

4
135

2
405 0 2

135

3 2 -2 5/2 1/2 1/2 -3/2 2 − 2
135

4
135

2
405 0 2

135

3 2 -1 3/2 1/2 -1/2 -3/2 -2 2
135 − 4

135 − 2
405 0 − 2

135

3 2 -1 5/2 1/2 1/2 -1/2 2 − 2
135

4
135

2
405 0 2

135

3 2 0 3/2 1/2 -1/2 -1/2 -2 2
135 − 4

135 − 2
405 0 − 2

135

3 2 0 5/2 1/2 1/2 1/2 2 − 2
135

4
135

2
405 0 2

135

3 2 1 3/2 1/2 -1/2 1/2 -2 2
135 − 4

135 − 2
405 0 − 2

135

3 2 1 5/2 1/2 1/2 3/2 2 − 2
135

4
135

2
405 0 2

135

3 2 2 3/2 1/2 -1/2 3/2 -2 2
135 − 4

135 − 2
405 0 − 2

135

3 2 2 5/2 1/2 1/2 5/2 2 − 2
135

4
135

2
405 0 2

135

Table 2: Energies E1, E2, E91, E92 and EII with Fj = j(j+1)−l(l+1)−s(s+1).
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n l ml j s ms mj Fj E13|EIII [Z
3

a3
0
]

1 0 0 1/2 1/2 -1/2 -1/2 0 �

1 0 0 1/2 1/2 1/2 -1/2 0 �

2 0 0 1/2 1/2 -1/2 -1/2 0 �

2 0 0 1/2 1/2 1/2 -1/2 0 �

2 1 -1 3/2 1/2 -1/2 -3/2 1 1
24

2 1 -1 3/2 1/2 1/2 -1/2 1 1
24

2 1 0 1/2 1/2 -1/2 -1/2 3 1
8

2 1 0 3/2 1/2 1/2 1/2 1 1
24

2 1 1 1/2 1/2 -1/2 1/2 3 1
8

2 1 1 3/2 1/2 1/2 3/2 1 1
24

3 0 0 1/2 1/2 -1/2 -1/2 0 �

3 0 0 1/2 1/2 1/2 -1/2 0 �

3 1 -1 3/2 1/2 -1/2 -3/2 1 1
81

3 1 -1 3/2 1/2 1/2 -1/2 1 1
81

3 1 0 1/2 1/2 -1/2 -1/2 3 1
27

3 1 0 3/2 1/2 1/2 1/2 1 1
81

3 1 1 1/2 1/2 -1/2 3/2 3 1
27

3 1 1 5/2 1/2 1/2 -5/2 1 1
81

3 2 -2 5/2 1/2 -1/2 -5/2 2 4
405

3 2 -2 5/2 1/2 1/2 -3/2 2 4
405

3 2 -1 3/2 1/2 -1/2 -3/2 2 8
405

3 2 -1 5/2 1/2 1/2 -1/2 2 4
405

3 2 0 3/2 1/2 -1/2 -1/2 2 8
405

3 2 0 5/2 1/2 1/2 1/2 2 4
405

3 2 1 3/2 1/2 -1/2 1/2 2 8
405

3 2 1 5/2 1/2 1/2 3/2 2 4
405

3 2 2 3/2 1/2 -1/2 3/2 2 8
405

3 2 2 5/2 1/2 1/2 5/2 2 4
405

Table 3: Energies E13 and EIII with Fj = 2 l(l + 1)− j(j + 1) + s(s+ 1).

5




