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ABSTRACT

The hamiltonian structure of the ECE fermion equation is used with a well known
but hitherto unused Pauli algebra to produce novel results including the magnetizability 0'f the
hydrogenic orbitals, and' novel spin orbit terms. All of these results should produce
observable new spectroscopies. If these spectroscopies are not observed experimentally
quantum mechanics would become self inconsistent at a fundamental level. The way in which

these results translate into particle collision theory is illustrated by an example.
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1. INTRODUCTION

In recent papers of this series {1 - 10} a well known {11} Pauli algebra has been
incorporated into the ECE fermion equation to produce several novel spectroscopies, each of
which should be observable experimentally. The same type of theory can be used in particle
collisions and scattering, and in low energy nuclear reactors. In Section 2 of this paper the
novel use of Pauli algebra with the fermion equation is used to produce several more classes
of results from each relevant hamiltonian. The energy expectation values for the hydrogenic
orbitals are given in Section 3 using computer algebra. The first type of hamiltonian
developed with this method produces the magnetizability of each hydrogenic orbital
considered, giving a rangé of novel results. The way in which the theory translates into
particle collision theory is exemplified. Three classes of new spin orbit hamiltonian are
identified by applying this method to the usual spin orbit hamiltonian with novel application
of Pauli algebra. The energy expectation values from each class are evaluated in Section 3 by
computer algebra for the hydrogenic orbitals. These energy expectation values should be
observable experimentally, otherwise quantum mechanics becomes internally self

inconsistent. This methodology will be developed in several ways in future papers.

2. EVALUATION OF THE HAMILTONIANS

The complete hamiltonian being considered systematically term by term is:
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in a semi classical theory where the electromagnetic field interacts with the hydrogen atom.

The charge on an electron of a given orbital is -, its mass is m, and for each polarization



index of ECE theory the scalar and vector potentials of the electromagnetic field are

' w
respectively C% and A. The SU(2) basis is used with the P:ili matrices f As basis
elements. The linear orbital momentum of an electron is p and the wavefunction is denoted A{v’

In deriving this hamiltonian a non relativistic approximation is used:
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and it is assumed that

Some terms of the hamiltonian ( {\__ ) have been developed in immediately preceding papers
using the well known {1 1} Pauli algebra:
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where 1 is the position vector of the electron of an H atom orbital, and L is its angular
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momentum: B
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The spin angular momentum operator is defined as usual:
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We first consider the term:
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which is the kinetic energy of the electron in the SU(2) basis. From Eqgs. ( Llr ) and (—l ):
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to find that Eq. ( | )is:
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and the spherical harmonics are defined {11} as
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the first combination of terms in Eq. ( \ 4 ) is the laptacian term. The overall result is

Therefore if:

therefore:
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The spherical harmonics are part of the hydrogenic wavefunctions and Eq. (1}) ) is expressed

in spherical polar coordinates. It can be written as: — ( QL‘_
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giving two novel classes of energy expectation values:
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A more rigorous development for the hydrogen atom would use the hamiltonian:
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in a non relativistic approximation. The usual Schroedinger hamiltonian in the H atom is:
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where the interaction between the electron and proton is given by the Coulomb potential in

which Go is the S. I. permittivity in vacuo. Eq. ( Di ) gives the well known hydrogenic



wavefunctions instead of the spherical harmonics. Eq. ( )\5 ) is therefore extended to:
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which has to be solved numerically

The next term to be developed using Eq. ( \-\‘ ) is the term quadratic in the

potential: HS(\F ) ﬁ_z__f_ E\_ f:- ﬂn\{) —~(}°>

A

Now note that: A . 5‘ ' ( < c. A X .o - ﬁ — [‘SD

LA
(
. T <(-A i o Oxh "/(3))
(6‘ A /—T( - o
( .
For a uniform magnetic field: ( 5})
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Therefore the hamiltonian ( 30 ) can be developed for real A as:
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which is quadratic in the magnetic flux density B. For simplicity of argument assume that
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then:
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in spherical polar coordinates. The expectation values of energy are:
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where the volume element in spherical polar coordmates 1s:
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and the magnetizability of the hydrogenic orbital is:
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The energy:
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can be used in second order perturbation theory in a novel way.
This type of theory can be translated as follows into particle collision theory.

Consider conservation of energy and momentum in the collision process
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So the translation occurs as follows:
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Consider now the kinetic energy hamiltonian:
and let:

in analogy with:
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Thereforiis—The gravitomagnetic field of the ECE engineering model {1 - 10}. The angular

momentum associated with f \ Is:
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The Z axis angular momentum in spherical polar coordinates is:
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where YW | is the mass of the particle with momentum ? . Here:
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is the angular velocity of particle 1, the particle with momentum p .
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and if:



the hamiltonian is:
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whose energy expectation values are: )
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If (\() are the hydrogenic wavefunctions then E are the energy levels of an H atom

interacting with a particle of momentum p and angular momentum Ll given by Eq. (5& ).
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The conventional spin orbit term of the hamiltonian ( _/_l_ ’31\5 {1-11}:
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where the Coulomb potential:
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is used to describe the attraction between the electron and proton of the H atom. In the non
relativistic approximation:
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and the spin orbit hamiltonian becomes:
‘. L]
e - o -f 74 LA

k\g‘*/ T T

bene ©

Now use Eq. ( \-\' )in Eq. ( LS ) to find the novel hamiltonian:



which gives several new spectroscopies.

The first class of novel spectroscopy is based on: (é
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in the operator representation {1.1}. So: . _ ( { 9 ‘
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Using Eq. ( 61 ) gives:
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According to the Born interpretation of quantum mechanics these expectation values
are observable. If they turn out to be unobservable quantum mechanics woqd‘-— have developed

a deep internal self inconsistency.

The hydrogenic wavefunctionis { \\ } (
_ %
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so an integral such as (_(\-\-)
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is the Bohr radius {1 - 11}. Here n is the main quantum number, 1 is the angular momentum
quantum number. These analytical results are confirmed numerically in Section 3. It is seen
that the energy EG\\ diverges to infinity for S orbitals but is otherwise finite.
The main spin orbit hamiltonian ( (L ) can be split into the following four

hamiltonians, each of which gives a novel spectroscopy in general:
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In the remainder of this Section these are evaluated systematically, and their hydrogenic

energy expectation values computed in Section 3. The first class to be considered is:

Wy oy = 'é"r 1= L'7b (29

\-\—vx‘f

where: _
Q . LA & (s
—_ B g

Hﬁk o (Rl O] 5oLt
i3 — 5> — (&

2
Lem ¢

where:



s ~ (3
¢ s
| LQ“(’ A -
e + o (s-dle- o) S5 )
\éfré NG 1 _

Using the Coulombic potential ( %%)g
Hiaeb = {f Lok ’(é‘)’&(/’ ~(C“>
vs.C/ b(

by = “Q% < J*) Q(ﬁ\ s (5% )[‘YL ‘H— AT

" E’l‘émo > of
b - Rel9%, 9) (~)
| " AT~ (33*'»\9 4 &Qﬁ% - (0\\\_>



! e 4 cLeld (v
\}“\} - —mecu (j.’_ | |

Using the operator representation ( 1\ ) gives the hamiltonian:
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These are evaluated by computer algebra in Section 3.

The third class derives from: (
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using again the operator representation ( 0\ ). So:
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in which the operator representation ( 6\ ) 1s used twice, so that:
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Therefore this class of hamlltonlan is:
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These are evaluated by computer algebra for the hydrogenic orbitals in Section 3.

The fifth class derives from:
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rather than the operator representation ( O\ ). This method gives:
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which is the same as Eq. ( C\S ) except for a sign change. The sixth and final class

considered here derives from: X
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in which the functional representation (| 0()) is used. This method gives the same result as

Eq. ( %L\— )-

The three distinct types of spin orbit hamiltonian to emerge are as follows. Class |

1_5%“ RV AR

\' T /—’_—— ('3 b\' v
Class Il is:

)f [ (30)- e(e)- SKSM) ’(i
e -

wém <’ >
s eyl
\\1\7’_+ i fm( ~(

The observable hydrogenic energy eigenvalues of these classes are evaluated by computer

algebra in Section 3, analysed and tabulated.



3. EVALUATION OF ENERGY EXPECTATION VALUES

Section by co author Horst Eckardt
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3 Evaluation of energy expectation values

In this section the expectation values of energies defined in section 2 are evalu-
ated by computer algebra. Basis are the analytically given Hydrogen-like wave
functions as used in papers 250 and 251. In general, integration of expectation
values of 7™ give results in factors

o ()" (112)

where n can be a positive or negative integer. ag is the Bohr radius and Z is
the ordinal number of the Hydrogen-like orbital. Normally the latter should
be set to 1 because no multi-particle interactions are contained in this simple
analytical form of wave functions. The constant factors of the energy eigenvalues
have been compiled in the following list, extended by their numerical values in
electron Volts (eV). To obtain the full energy expectation values, the results

*email: emyrone@aol.com
femail: mail@horst-eckardt.de



listed in the tables have to be multiplied by these values.

A
By = — = =1074.26 Z* (113)
m ag
2 z2
Ey=— = =537.1312> 114
27 9m a? (114)
e? B2 a3 B2
Es = Z 0 g1 1071 =£ 11
5= 5. 6.15650 10 —2 (115)
2,2 2 2,2
L 1027w
FEg ol 2.39835 - 10 = (116)
3h2er 73
Fgp = ——— = =0.0429045 Z° 11
o 16megm?c? af 0.0429045 (117)
K2 e? 72
Egg=——— 2 = _0.0143015 23 11
2 16megm?c? a2 0143015 (118)
h2e2 73
Fijp=-————— = =-0.0143015 Z° 119
10 16mm2c? a} (119)
h2 e? 73
Ei=—-——— = =-0.0143015 23 120
1 16megm?c? af (120)
K2 e? 73
Fi3=——— = =0.0143015 23 121
BT W6meom?c? ad (121)
h2e2 73
Ej=———— = _ = -0.0143015 23 122
! 16 m™m?c? a} (122)
K2 e? 73
Eg=———" = _ =0.0143015 73 123
T 6meom?c a3 (123)
h2 2 Z3
B = —— 2 = 00143015 23 (124)

16megm?c? aj

It can be seen that E; and E» give remarkable energies up to the keV range.
These are reduced by a factor of 10 to 100 (see the following tables), but com-
pared to the orbital energies these splittings are huge. The energies of the other
energies come to lie in the range of 1/100 eV, leading to minor corrections of
spectra as expected. Nevertheless they should be observable by sensitive spec-
trometers.

The energy eigenvalues have been grouped to three tables. In the first table,
those depending only on non-relativistic quantum numbers n, [, m; are listed.
In the second table, those with the common factor

Fi=43G+1)—-1l(1+1)—s(s+1) (125)
are shown and in the third table those with
Fi=21(1+1)—jG+1)+s(s+1). (126)

Thus the effect of F}; can be seen, in particular where this factor forces the energy
eigenvalues to zero. In Table 1 the integrals for F5 and Eg are identical, however
their effects are quite different. FEs leads to a tiny correction of the Zeeman
effect quadratic in the magnetic field, producing a magnetizability of orbitals
(Eq.(44)), whereas Ejs is a correction due to mechanical rotations (Eq.(60)). E1o



ap
1 0 0 2 -5
2 0 0 28 2
2 1 0 12 =
2 1 +1 24 =
3.0 0 138 -3
3.1 0 72 =
3 1 +1 144 =
3.2 01 60 155
3 2 +1 72 e
3 2 2 108 o

Table 1: Energies Es, Eg, E19 and Ej.

and E; (from Eq.(109)) have the same factors, leading to similar corrections.
These are particlularly significant for the 1s orbital.

From the first table with relativistic quantum numbers (Table 2) it can be
seen that Fgz gives no spectral corrections at all. The integral (Eq.(75)) vanishes
for all orbitals. Fq9; and Ej; are not defined for s-like orbitals. As can be seen
from Eq.(110), the first term of the integral produces an expectation value of
1/73 which diverges for s states. The second term is identical to Egs and gives
no contribution. F; and E5 give only contributions for [ # 0.

The energy expectation values of F13 and Epj; are identical as can be seen
from Eqs.(121,124) and Table 3. The integrands are the same as for Fog1, leading
to diverging integrals for s-like states.
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n I m J s Mg m;  F; By [%g] Es [%} Eg1 [%g} Eog, [%g} Err [%g}
1 0 0 1/2 1/2 -1/2 -1/2 0 0 0 — 0 —
1 0 0 1/2 1/2 1/2 1/2 0 0 0 — 0 —
2 0 0 1/2 1/2 -1/2 -1/2 0 0 0 — 0 —
2 0 0 1/2 1/2 1/2 1/2 0 0 0 — 0 —
2 1 -1 3/2 1/2 -1/2 -3/2 1 - = = 0 3
2 1 -1 3/2 1/2 1/2 -1)2 1 -5 & > 0 3
2 1 0 1/2 1/2 -1/2 -1/2 -1 o -5 - 0 -3
2 1 0 372 1/2 1/2 1/2 1 -5 = o 0 :
2 1 1 1/2 1/2 -1/2 1/2 -1 = - —o 0 —3
2 1 1 3/2 1/2 1/2 32 1 -5 5 3 0 3
30 0 1/2 1/2 -1/2 -1/2 0 0 0 — 0 —
3.0 0 1/2 1/2 1/2 1/2 0 0 0 — 0 —
3.1 -1 3/2 1/2 -1/2 -3)2 1 —&% & = 0 =
3.1 -1 3/2 1/2 1/2 12 1 —& Z = 0 =
31 0 1/2 1/2 -1/2 -1/2 -1 = -2 - 0 -
3.1 0 3/2 1/2 1/2 1/2 1 —% Z = 0 >
301 1 1/2 1/2 -1/2 1/2 -1 = -& — 5 0 -
3.1 1 5/2 1/2 1/2 3/2 1 -4 Z = 0 >
3.2 -2 5/2 1/2 -1/2 -5/2 2 - 5 = 0 =
3.2 -2 5/2 1/2 1/2 -3/2 2 - 5 = 0 =
3 .2 -1 3/2 1/2 -1/2 -3/2 -2 — 135 — = 0 — 3
32 -1 5/2 1/2 1/2 -1/2 2 s = = 0 =
3.2 0 3/2 1/2 -1/2 -1/2 -2 3 — 15 -2 0 -2
3.2 0 5/2 1/2 1/2 1/2 2 —3 e o 0 =
3.2 1 3/2 1/2 -12 1/2 -2 3 — 1 — 5= 0 -2
3.2 1 5/2 1/2 1/2 3/2 2 - T E 0 =
3.2 2 3/2 1/2 -1/2 32 -2 3 — 135 — = 0 -1
3.2 2 5/2 1/2 12 5/2 2 —i I3 = 0 =

Table 2: Energies F1, Es, Eg1, Ege and Err with F; = j(j+1)—1(I+1)—s(s+1).
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0

-1/2
-1/2
12
“1/2
-3/2
-1/2
-1/2

-1/2

1/2
1/2
1/2
1/2
1/2

1/2
1/2
1/2
1/2
3/2

1/2
12

0

1/2
-1/2

1
1
3

1/2
-1/2

1/2
1/2
1/2
1/2
1/2
1/2
1/2

-1 3/2

1

1/2
0 3/2

1/2
1/2
3/2
172
-1/2
-3/2
-1/2
-1/2

1/2
-1/2

1

|00

3

1/2
3/2

1/2
172

1

1

0
0

1/2
1/2
3/2
3/2

1/2
-1/2

1
1
3

1/2
1/2
1/2
1/2
1/2
1/2
1/2

-1

1
1

1/2
-1/2

-1

1/2
0 3/2

1/2

3/2
-5/2
-5/2
-3/2
-3/2
-1)2
-1)2

1/2
-1/2

1

3

3
1

1/2
5/2
5/2

1/2
-1/2

2

-2

2

3
3

4
405

2

1/2
-1/2

1/2
1/2
1/2
1/2

5/2
3/2
5/2

0 3/2

-2

2

8
405

2
2
2

1/2
-1/2

-1

2
2
2
2
2

3
3

12 -1/2 1/2 2
3/2

1/2

3/2
5/2
2 3/2

1/2
-1/2

1

2

3/2

1/2

2
2

3
3

Table 3: Energies Eq3 and Erpp with F; =2 1(1+1) —j5(j +1) +s(s +1).





