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ABSTRACT 

It is shown that in electromagnetism in ECE physics the magnetic flux density, 

vector potential and spin connection are in general Beltrami vectors. The vector part of the 

Cartan identity also has a Beltrami structure in general. In U(l) physics (standard model), the 

Beltrami structure of the magnetic flux densit y immediately refutes U (1) gauge in variance 

and indicates identically non-zero photon mass and the absence of a Higgs boson. In 

magnetostatics the spin curvature and current densit yare also Beltrami vectors. Photon mass 

theory is discussed and developed in terms of Beltrami electrodynamics and the Proca 

equation. In general, the Beltrami equation has intricate solutions which are discussed, 

graphed and animated in Section 3. Similar conclusions hold for gravitation 

Keywords: ECE physics, Beltrami electrodynamics, finite photon mass. 
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1. INTRODUCTION. 

In recent papers of this series the Beltrami structure of ECE physics has 

been investigated, with several interesting conclusions { 1 - 10}, In this paper it is shown that 

in electromagnetism in general, the magnetic flux density, vector potential and spin 

connection vector are always Beltrami vectors with intricate structures in general, solutions 

of the Beltrami equation { 11}. The latter was first applied in hydrodynamics, and is useful in 

several subject areas that include magnetohydrodynamics, aerodynamics, cosmology and as 

shown in recent papers { 1 - 1 0}, electromagnetism and gravitation. The background notes for 

this paper (UFT258 on www.aias.us) contain many details and conclusions and are referred 

to in context. In Section 2 the Beltrami structure of the vector potential and spin connection 

vector is proven in ECE physics from the Beltrami structure ofthe magnetic flux density B. It 

is shown that the space part of the Cartan identity also has a Beltrami structure. In U(1) 

physics (the standard model), the Beltrami structure ofB immediately refutes U(1) gauge -
invariance because B becomes directly proportional to A. It follows that the photon mass is 

identically non zero, howNer small in magnitude. Therefore there is no Higgs boson in 

nature because the latter is the result ofU(1) gauge invariance. The Beltrami structure of~ is 

the direct result of the Gauss law of magnetism and the absence of a magnetic monopole. It is 

difficult to conceive of why U(1) gauge invariance should ever have been adopted as a 

theory, because its refutation is trivial. Once U(1) gauge invariance is discarded, a rich 

panoply of new ideas and results emerge. These are summarized briefly in Section 2 with 

reference to the complete calculational details in the background notes accompanying 

UFT258 on www.aias.us. 

In Section 3 the intricate structure ofBeltrami vectors is illustrated by graphics and 

animation. The animations are all posted in the publication I animation section of 

www.aias.us. This paper shows that this intricate structure is present in electromagnetism and 
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gravitation, in the magnetic flux density, vector potential, and spin connection vector. These 

are major discoveries ofECE physics. 

2. DERIVATION OF THE BELTRAMI EQUATIONS. 

The Gauss law of magnetism in ECE physics is: 

- 0 - -
from which the Beltrami equation follows immediately (notes 258(1) to 258(5), and 258(9)): 

-
<A. 

Here!!, is the magnetic flux density in tesla and \( has the units of inverse metres. In the 

simplest case \{ is a wave vector, but as the accompanying notes 285(6) to 258(8) show it 

can become very intricate. Some well known solutions { 11} of the Eq. ( d. ) are animated 

in Section 3, so the flow structures can be viewed directly. Comparing Eq. ( ~ ) with the 

Amp)re Maxwell law of ECE physics: 

- -
\ -
1 

(. 

' - C\ dl: -
~ 

the magnetic flux density is given directly as follows: 

. 
where .§_js the electr~~c field strength in volts per meter andl. is the current density. Here r fJ 

is the vacuum permeability inS. I. Units. The Coulomb law in ECE physics is: 

0.. 

where( is the charge density and f. the vacuum permittivity. Using Eq. ( 5 ): 
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a result which follows from: 

Eo;~ -: ..L -h) 
1 

(.... 

where c is the universal constant known as the vacuum speed of light. Note carefully that c is 

the vacuum speed oflight if and only if the photon mass is identically zero. The latter 

assumption relies on U(l) gauge invariance. The conservation of charge current density in 

ECE physics is: 
0 - {~ 

soB is always a Beltrami vector, Q. E. D. 

In U(l) physics: 

where~ is the vector potential. Eqs. ( "\ ) and ( \0 ) immediately show that in · 

physics, the vector potential also obeys a Beltrami equation: 

vr.A -
and 

-
So the magnetic flux density in U(l) physics is directly proportional to the vector potential A. -
It follows immediately (note 258(1)) that A cannot be U(l) gauge invariant, because U(l) 

gauge mvarmnce means: 

and if A is changed, B is changed. The obsolete dogma ofU(l) physics asserted that Eq. 

( \~ ) does not change any physical quantity. This dogma is obviously incorrect because B is -
a physical quantity and Eq. ( \3 ) changes it. Therefore there is finite photon mass and no 
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Higgs boson. The expenditure oftens of billions at CERN is trivially refuted . . 
Finite photon mass theory relies on the Proca equation { 1 -1 0}, which is not U ( 1) 

gauge invariant {12}. The Proca equation can be developed as: 

<J . ~ ~ ~ 0 ( '4-) 
'1 : ~ "' -t .)~" {dt ~ .Q _ ( tS) 
- SL -:-~ " -; (. t:. I f. - ( tl) 

G "l'- ~ "' - J_ )'S_ "'- .,_ M" }_ .. - (n) 
- c.") T I 

where the four current density is: 

--s ~ ~ c I", 1 "') - (t~ 
and where the four potential is: 

Proca theory in ECE physics asserts that { 1 -1 0}: 

where m is the photon mass and~ the reduced Planck constant. Therefore: 

-
fo C J ( "'-( { ~y {'·- (;~tJ 
-0o(~c/{)a_~ -(~l) 

The Proca equation was inferred in the mid thirties but is almost entirely absent from 

the textbooks. This is a most unfortunate result of incorrect dogma, that the photon mass is 

zero, despite being postulated by Einstein in about 1905 to be a particle. Therefore it is 

convenient to give a brief review ofProca theory on the U(1) level before proceeding to the 

ECE level. The U(l) Proca field equation in correct S. I. Units is 



= lT J"J A~ - ( J.0 

J,.J j 
..J (~1 tAN ~ 0 

-::.-

It follows immediately that: 

and that: 

Eq. cJ.Sc..) is conservation of charge current density and Eq. cJSb) is the Lorenz condition. 

In the Proca equation, the Lorenz condition has nothing to do with gauge invariance. The 

U ( 1) gauge in variance means that: 

h"" ..., A ""' + y-- 't - h·') 
and from Eq. ( 'l S) it is trivially apparent that the Proca field and charge current density 

change under the transformation ( J.b ), so are not gauge invariant, Q.E.D. The entire edifice 

ofU(l) electrodynamics collapses as soon as photon mass is considered. 

In vector notation Eq. ( d.\t) is: 

I l_ ('I. f.) -:.. 
7 c)k 

- 0 

-
l (i. ~) ~~. Q ,j -

' 
---':l dt c.-

and: 

'J ~.....,...., ~ ..... 0 - (~"') -
Now use 

-
and the U ( 1) Coulomb law: 

- (d0 

0 -(dV 



"[ 
,..... ~I-~ t. ( 31l) ·\:. -- -

to find that 

J - (>0 \ ~ ~0 'J . J - ~ -
d. f. c. (J 

which is the equation of charge current conservation, Q. E. D.: 

- 0. 

In the Proca theory, Eq. ( 'JS) implies the Lorenz gauge, as it is known in standard physics: 

The Proca wave equation in U(l) or standard physics is obtained from the U(l) 

definition of the field tensor: 

So: 

in which: 

Eq. ( '3' ) follows from Eq. ( )3) in Proca physics, but in standard physics the Lorenz 

gauge has to be assumed, and is arbitrary. So the Proca wave equation is: 

( G -t (r.- <- I f))) A~ ~ 0 . - (::-,) 

In ECE physics Eq. ( 3l ) is derived from the tetrad postulate of Cartan geometry and 
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becomes: 

In ECE physics the conservation of charge current density is: 

and is consistent with Eqs. ( \t ) and ( \\)as just shown on the U(l) level, Q.E.D. 

ECE physics has been tested rigorously in two hundred and fifty eight papers of this 

series to date, and is always self consistent because it is based on Cartan's self consistent 

geometry. 

In ECE physics the electric charge density is geometrical in origin and is: 

- \c, 

·\: -
- cB_~· g\ (~~ 

and the electric current density is: b '\ l 
~ ..L (~ "1. '~'-!I.+~~ I. - tt··- ~ \ &(0 -A. g_'\ ( ... 1j 
/, ~ ~ c. - ( 4\) 
Here Rk ~d R!Jol the spin and orbital components of the curvature tensor {I -I 0}. So 

Eqs. ( ~ ), ( ~o ) and ( 4\ ) give many new equations ofECE physics which can be 

developed systematically in future work. 

In magnetostatics for example the relevant equations are: 

0 - -

and: -'\[ 0 
- --- -



So it follows from charge current conservation that: 

dr ~ I Jt - o 

in ECE magnetostatics. 

In immediately preceding papers of this series it has been shown that in the absence 

of a magnetic monopole: 

and that the space part ofthe Cartan identity in the absence of a magnetic monopole gives the 

two equations: b -(4-~ " A () <q G.J \o ")<... -• - - -
and: 

A b. - {~~ 'JxA\, ~ " w CA. \, 
'?<.,W \o 

• - - -- -
In ECE physics the magnetic flux density is: 

- - -
so the Beltrami equation gives: 
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Eq. ( ~'\)from the space part of the Cartan identity is also a Beltrami equation, as is any 

divergenceless equation: 

From Eq. ( S"d..): 

~ ~(~ .,._ ~ <.)-~ ,._( ~ "1, ~ f\ \,) 

which implies that the vector potential is also defined in general by a Beltrami equation: 

- -
- ( st) 

Q.E.D. This is a generally valid result ofECE physics which implies that: 

<:] A " 0 ( c;-r) • -- -
From Eq. ( )~ ), it follows that: d c.. 0 - { S") -

~ 
is a general result of ECE physics. 

From Eqs. ( So) and ( 5 t ): 

so the spin connection vector of ECE physics is also defined in general by a Beltrami 

equation. 



-I ~ 

These important results can be cross checked for internal consistency using note 

258(4), starting from Eq. ( ~0) ofthis paper. Considering the X component for example: 

<A ~ ( \J 1\ ~) . A\, I :::j )<.. w ~ \,\ - ( b9 
w "' _'f.. n "" - -,<. l- - ')Y... -

and it follows that: t ( ') 
)__ -Q ""'- a )(. 
Ac~ -

\ --

and similarly for the Y and Z components. I order for this to be a Beltrami equation, Eqs. 

( 5l ) and cS<\) must be true, Q. E. D. 

In magnetostatics there are additional results which emerge as follows. From vector 

analysis: 

-
~ b ~ (. 0 ~ " ~ ..- "- • -\] X (2 to s ,·~ 

SI_. ~ ~~ \,(y0~ R ~&~i~. 'i~(i -B_ -_ f0) f . 

It is immediately clear that Eqs. ( ~ ) and ( S~) give Eq. ( b cl._) self consistently, Q. 

E. D. Eq. ( ~?, ) gives: ( J 
\, - nb nc... s· -0 <:J • ~a. \o X ~ -=- 'j__ • ~ ~ ~ ~ f'~ -

and using Eq. ( t ~ ): 

so the spin curvature is defined by a Beltrami equation in magnetostatics. Also in 

magnetostatics: 

-(a) 
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so it follows that the current density of magneto statics is also defined by a Beltrami equation: 

- -
All these Beltrami equations have in general the intricate flow structures animated in 

Section 3 and posted in publications I animation on www.aias.us. As discussed in Eqs. (31) to 

(35) ofNote 258(5) plane wave structures and 0(3) electrodynamics {1 - 10} are also defined 

by Beltrami equations. The latter give simple solutions for vacuum plane waves. In other 

cas€ the solutions become intricate. The B(3) field { 1 - 1 0} is defined by the simplest type of 

Beltrami equation: 

-
In photon mass theory therefore: 

- ( ~") '([ F\ " \--c A ~ ")<.. -- -
and: 

( (TJ~ A ~ 6 .-(l0 
Q t --

It follows from Eq. ( b C\) that: 

- C~0 'J A 
~ 

0 • ---

so: 

produces the Helmholtz wave equation { 11 } : 



-
-~ 

') 

so: 

Now use: 

-
and 

1-(~j) (i~ 

~vcJ~(TjJ 

~ !!_ - C~9 

a_ G ~_Q -(c9 

to find that Eq. ( l s;) is the Einstein energy equation for the photon of mass m, so the 

analysis is rigorously self consistent, Q. E. D. 

In ECE physics the Lorenz gauge is: 

1. e. 

with the solution: 

J_ 
') 

(/ 

-
\( ·AG..- o. --

This is again a general result of ECE physics applicable under any circumstances. Also in 
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ECE physics in general the spin connection vector has no divergence: 

\1 CJ " \o - 0 - (<?0 • .... --
because: 

\""( w ~ ~ - (~:l) q ""- w "\o - . ---
Another rigorous test for self consistency is given by the definition of the magnetic 

field in ECE physics: 

-
so: 

0 

- -
By vector analysis: 

-- L, 
~ ~ A~ \l CA. (;.)~\, . \1 '><- A 

'l . w \,)(..f\ ":- . - X w ~ -
- r~0 - - -- - 0 -because: 

- ( <6b) 
<:J ')(.. cv 0. lo - ~'( w "~ 

- I -
'\[ )<... 

A~ - v-c A l.) (tt) -
and: lt, 

6 l~i) 
A --'1 -=--• J -- - ( ia) 

"'£ GJ G.\o ':::_ () 
• -· -

In the absence of a magnetic monopole Eq. ( ~~) als~ follows from the space part of the 

Cartan identity. So the entire analysis is rigorously self consistent. 
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The cross consistency of the Beltrami and ECE equations can be checked using: 

\:, \, \, (\ c t -=- \"'l ~ - ~ c ~ !2-
-

(as in note 2S~(l)). Eq. ( C\0) follows from Eqs. ( ~) ) and ( <()1 ). Multiply Eq. (~c?) 

by GJ 01. \,and use Eq. ( 4-~ ) to find: 1 ( ) ~, 
-G. \o c. \, "" A. c - _A ~. £_ a.k ..sf,·" . -(~' 

\:(_CJ ~. F\ _CA> b ·~ c 

- --
Now use: \-, A c w "'\,. w c.~ - --
and relabel summation indices to find: 

c;.. f\. t,- Alo· (w_\. x~c\o\ K G.l "o • n ,J - - -
It follows that: 

Q.E.D. The analysis correctly and self consistently produces the correct definition of the 

spin curvature. 

Finally, on the U(l) level for the sake of illustration, consider the Beltrami 

equations (note 2S.~3)): (qc;) q ")(. A \/( A 
and: 

V\~ ("'i) 
'J "f.- ~ ..... ---:-

' In the Ampere Maxwell law: 

- (q() 
~ ~~ \ )( ~ /'· j - --- - ") dt c.-
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It follows that: 

where: 

Therefore: "') 

\((, A -
and using the Lorenz condition: 

.(\ -
it follows that: 

- 0 

Using: 

0 
Eq. ( \ 0 0) becomes the d' Alembert equation in the presence of current density: 

QA - ( l•t.-) 
The solutions of the d' Alembert equation ( \o~ may be found from: 

'X: A -
showing in another way that as soon as the Beltrami equation ( :;;) ) is used, U(l) gauge 

invariance is refuted. 

3. GRAPHICS AND ANIMATION 

Section by co author Horst Eckardt 
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3 Graphics and animation

1. We start the investigation of special Beltrami �elds with a general consid-
eration. Marsh[12] de�nes a general Beltrami �eld with cylindrical geometry
by

B =

 0
Bθ (r)
BZ (r)

 (106)

with cylindrical coordinates r, θ, Z. There is only an r dependence of the �eld
components. For this to be a Beltrami �eld, the Beltrami condition in cylindrical
coordinates

∇×B =


1
r
∂BZ
∂θ −

∂Bθ
∂Z

∂Br
∂Z −

∂BZ
∂r

1
r

(
∂(r Bθ)
∂r − ∂Br

∂θ

)
 = κ B (107)

must hold. The divergence in cylindrical coordinates is

∇ ·B =
1

r

∂(r Br)

∂r
+

1

r

∂Bθ
∂θ

+
∂BZ
∂Z

. (108)

Obviously the �eld (106) is divergence-free, a prerequisite to be a Beltrami �eld.
Eq.(107) simpli�es to

∇×B =

 0

−∂BZ∂r
∂Bθ
∂r + 1

rBθ.

 = κ

 0
Bθ
BZ

 . (109)

Since the common factor κ (in general a function) must be identical for the
second and third component, we obtain the condition

−
∂
∂ r BZ

Bθ
=
r ( ∂

∂ r Bθ) +Bθ

r BZ
(110)
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or

−r BZ
(
∂

∂ r
BZ

)
= Bθ

(
r

(
∂

∂ r
Bθ

)
+Bθ

)
(111)

which can be transformed into the integral equation

−BZ
2

2
=

∫ (
Bθ

(
∂

∂ r
Bθ

)
+
Bθ

2

r

)
dr + C. (112)

From this non-linear di�erential equation one of the B components can be ob-
tained when the other is known. We tried out several calculations by computer
algebra. It is not easy to �nd meaningful physical solutions. A very simple case
is

Bθ = αr (113)

with a constant α. Then from Eq.(112) follows (with C = 0):

−BZ
2

2
= 2 α2

∫
r dr = α2 r2 (114)

or

BZ = ±
√

2 i α r (115)

which is a complex solution with a complex wave number function

κ = ∓
√

2 i

r
. (116)

Using other powers of r results in complex solutions also. Trigonometric func-
tions lead to very complicated solutions of the integral - if any - and are barely
manageable even by computer algebra.

Next we consider the case of constant κ. From the second component of
Eq.(109) follows

− ∂

∂ r
BZ = κBθ (117)

and from the third component

r
∂

∂ r
Bθ +Bθ = κ r BZ . (118)

Integrating Eq.(117), inserting the result for BZ into (118) gives

∂

∂ r
Bθ +

Bθ
r

= −κ2

∫
Bθ dr, (119)

and di�erentiating this equation leads to the second order di�erential equation

r2 ∂2

∂ r2
Bθ + r

∂

∂ r
Bθ + κ2 r2Bθ −Bθ = 0. (120)
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Finally we change the variable r to κr which leads to Bessel's di�erential equa-
tion

r2 d2

d r2
Bθ (κ r) + r

d

d r
Bθ (κ r) +

(
κ2 r2 − 1

)
Bθ (κ r) = 0. (121)

The solution is the Bessel function

Bθ(r) = B0 J1(κr) (122)

(with a constant B0) and from (117) follows

BZ(r) = B0 J0(κr). (123)

This is the known solution of Reed/Marsh, scaled by the wave number κ, with
longitudinal components. This solution was already analyzed in paper 257. The
stream lines are shown in Fig. 1. It has to be taken in mind that stream lines
show how a test particle moves in the vector �eld which is considered a velocity
�eld:

x + ∆x = x + v(x) ∆t. (124)

All streamline examples are started with 9 points in parallel on the X axis so
all animations should be comparable.

2. Fig. 2 shows stream lines of the "chaotic oscillator" which is de�ned by
the �eld

v =

T3 cos (T Y ) + T2 sin (T Z)
T3 sin (T X) + T1 cos (T Z)
T2 cos (T X) + T1 sin (T Y )

 . (125)

As already discussed in paper 257, this is a Beltrami �eld for T1 = T2 = T3 but
is not so chaotic as perhaps assumed, the stream lines move mainly along the
coordinate axes, with mirrored symmetry between the planes.

3. The general Beltrami �eld can be written as

v = κ ∇× (ψa) + ∇×∇× (ψa) (126)

where ψ is an arbitrary function, κ is a constant and a is a constant vector. In
paper 257 we discussed the example with

ψ =
1

L3
XY Z, (127)

a = [0, 0, 1]. (128)

The �eld is coplaner to the XY plane and gives planar streamlines of hyperbolic
form (Fig. 3).

4. The solution of Rodrigues-Vaz is de�ned by

v =


−
(
αΩ y
r3 −

β x z
r5

)
C

−
(
−β y zr5 −

αΩ x
r3

)
C

−
(
β (y2+x2)

r5 − 2α
r3

)
C

 (129)
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with constants C, Ω, α, β and radius function r. The �eld is a kind of spherical
vortex �eld as can be seen from the �eld vector plot (Fig. 4). The vectors switch
orientation over the Y direction by rotating into Z direction so a longitudinal
component emerges. The projection of the three graphed Z planes into the XY
plane (Fig. 5) shows that there is also a rotation in Z direction. At the origin
the vector points exactly in Z direction therefore it is not visible in this graph.
The streamlines (Fig. 6) of this Beltrami �eld show a chaotic vortex around the
centre. This structure is con�ned by the inverse powers of r in the de�nition of
v. This reminds to the classical atomic model with electrons circulating around
the nucleus.

5. Another known solution based on Bessel functions is the Lundquist solu-
tion

v =

J1(κr)λe−λZ

J1(κr)αe−λZ

J1(κr)e−λZ

 (130)

with

κ =
√
α2 + λ2 (131)

and constants α and λ. The Lundquist function (for Z > 0) is graphed in Fig.
7 and initially behaves similar to the Bessel case discussed above. However the
�eld shrinks with Z due to the exponential factor. Fig. 8 shows a projection
into the XY plane. The vectors are always rotated by 45◦ against the radial
direction. Longitudinal parts are not visible here as discussed for the Rodriguez-
Vaz case. Outer streamlines (Fig. 9) go down to the region Z < 0, and here the
exponential factor exp(−λZ) gives an exponential growth, this is well recogniz-
able in the second version of this animation on www.aias.us. λ can be assumed
complex-valued as discussed by Reed, leading to oscillatory solutions, but then
problems can arise in other parts of the �eld de�nition.

6. Finally we give some graphic examples for plane waves. Although these
are well known, it is useful to recall certain features that not always are con-
sidered where plane waves are used. In ECE theory their most prominent ap-
pearance is in the vector potential of the free electromagnetic �eld, in cyclic
cartesian coordinates:

A1 =
A0√

2

 ei (ω t−κZ)

−i ei (ω t−κZ)

0

 , A2 =
A0√

2

 ei (ω t−κZ)

i ei (ω t−κZ)

0

 , A3 = 0. (132)

Their divergence is zero and the eigenvalue of the curl operator is κ or −κ,
respectively. The plane wave can also be de�ned as real valued:

A1 =
A0√

2

 cos(ω t− κZ)
− sin(ω t− κZ)

0

 , A2 =
A0√

2

sin(ω t− κZ)
cos(ω t− κZ)

0

 , A3 = 0 (133)

and are Beltrami �elds also, however with positive eigenvalues for A1 and A2.
The real-valued plane waves are graphed as vector �elds in Fig. 10 for a �xed
instant of time t = 0. A1 and A2 are perpendicular to one another and de�ne
a rotating frame in Z direction. The streamlines in one plane are all parallel

4



straight lines. To show a variation, they have been graphed in Fig. 11 for
di�erent starting points on the Z axis. Here the rotation of frames can be seen
again.

Streamlines of plane waves are not very instructive concerning the physical
meaning of these waves. It is more illustrative to show their time behaviour. We
started with streamlines in the XY plane and computed their time evolution.
The streamlines would remain in that plane so we added a Z component v t
to simulate a propagation in that direction as is the case for electromagnetic
waves with v = c. Thus in Fig. 12 the trace of circularly polarized waves is
obtained. Interestingly the waves are phase-shifted, although all starting points
are at Y = 0.

In this paper we are considering plane wave in the context of Beltrami �elds.
As worked out the �elds E, B and A are parallel. Therefore the components
A1 and A2 do not demonstrate the behaviour of electric and magnetic �elds
of ordinary transversal electromagnetic �elds which are phase-shifted by 90◦.
Reed[11] gives a very good explanation of this extraordinary case:

Every plane wave solution corresponds to two circularly polarized waves prop-
agating oppositely to each other and combining to form a standing wave. This
standing wave does not possess the standard power �ow feature of linearly- or
circularly-polarized waves with E ⊥ B, since the combined Poynting vectors of
the circularly-polarized waves cancel each other similar to the situation we met
earlier in connection with Beltrami plasma vortex �laments. Essentially, the
combination of these two waves produces a standing wave propagating non-zero
magnetic helicity. In the book by Marsh [12] the relationship is shown between
the helicity and energy densities for this wave as well, as the very interesting fact
that any magnetostatic solution to the FFMF equations can be used to construct
a solution to Maxwell�s equations with E‖B.

Figure 1: Streamlines of the Bessel function solution.
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Figure 2: Streamlines of the chaotic oscillator.

Figure 3: Streamlines of the general solution with ψ = 1
L3XY Z.

Figure 4: Rodrigues-Vaz solution.

6



Figure 5: Rodrigues-Vaz solution, projected to XY plane.

Figure 6: Streamlines of Rodrigues-Vaz solution.

Figure 7: Lundquist solution.
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Figure 8: Lundquist solution, projected to XY plane.

Figure 9: Streamlines of Lundquist solution.
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Figure 10: Plane wave �eld, A1 and A2.

Figure 11: Streamlines of plane waves.
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Figure 12: Time evolution of points transported by plane waves.
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