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ABSTRACT 

Spin orbit interaction and atomic fine structure in atomic hydrogen is described 

with two and three dimensional x theory, in which the extension ofthe non relativistic to the 

relativistic theory is achieved by transforming the elliptical description of the dynamics in x 

theory to a precessing elliptical description. A fully self consistent description requires a three 

dimensional lagrangian and hamiltonian expressed in spherical polar coordinates and 

relativistic quantum mechanics emerges when the angles of the spherical polar system are 

multiplied by the precession factor x. In Eckardt quantization this is an integer, the Eckardt 

quantum number. 

Keywords: ECE theory, x theory spin orbit interaction, fine structure of atomic hydrogen. 



-I ~ 

1. INTRODUCTION 

In recent papers of this series { 1 - 1 0} the x theory has been developed to give a 

self consistent description of well known phenomena on all scales in physics and chemistry. 

These include planetary precession, electromagnetic deflection due to gravitation, photon 

mass theory, the gravitational time delay, gravitational red shift, the ubiquitous Thomas 

precession, and the Bohr and Sommerfeld theories of quantum mechanics. The origin of 

planetary precession has been shown to be ubiquitous Thomas precession, which occurs on all 

scales, from galactic to atomic. The parent ECE theory of x theory has been shown to give· a 

satisfactory description of the basics of a whirlpool galaxy, notably its velocity curve and 

hyperbolic stellar _orbits. All this has been achieved with a simple elliptical theory. The ellipse 

precesses when the angles of the spherical polar coordinate system are multiplied by the 

precession factor x. The latter has been analyzed in terms of the ubiquitous Thomas 

precession. Eckardt quantization is defined for integral x, a process which produces de 

Broglie wave structure superimposed on the ellipse. The precession and wave structure are 

examples of conical section theory with the angle multiplied by x. In previous papers of this 

series { 1 - 10} on www.aias.us these patterns have been referred to as fractal conical sections. 

For x close to unity the ellipse precesses, but as it becomes larger the wave patterns appear. If 

x is defined as the integer n the number of waves superimposed on the ellipse is n. In the 

preceding paper the x theory was extended to Schroedinger quantization. 

In Section 2 the x theory is applied to describe spin orbit coupling and the fine 

structure of atomic hydrogen (H). The backgrolUld notes accompanying this paper should be 

read as an intrinsic part of the development of this paper. This paper itself (UFT268) gives a 

brief description of the main results. The first background note accompanying UFT268 on 
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www.mas.us calculates the energy levels of the H atom by evaluating the expectation value of 

the hamiltonian for the first few hydrogenic wavefunctions using hand calculations and 

computer algebra. It is shown that expectation values of (•.sf and Co.Se are 

zero for all the hydro genic wavefunctions, where + and e are the angles of the 

spherical polar coordinate system. The second background note 268(2) derives the elliptical 

orbit from the classical hamiltonian describing the interaction of an electron and proton using 

plane polar coordinates. This is an approximation to the three dimensional hamiltonian in 

which spherical polar coordinates are used. A fully consistent three dimensional theory is 

developed in note 268(9) and is described in Section 2 of this paper. The plane polar 

coordinates are sufficient for planetary orbits in a plane, but are clearly an approximation to 

the problem of orbitals in atomic hydrogen. The atomic orbitals are three dimensional and 

quantized. Planetary orbits are two dimensional, classical and planar. Various expectation 

values of relevance are computed for the first few hydro genic wavefunctions and the results 

discussed in Section 3. 

Note 268(3) begins the development of spin orbit interaction theory from x theory 

by first applying Schroedinger quantization to the classical non relativistic hamiltonian in a 

plane. There are two principal planes, defined by the two angles of the spherical polar 

coordinate system. Various relevant expectation values were found to be different for the two 

types of ellipse. The basic hypothesis of this paper is that relativistic quantum theory is 

defined by a precessing ellipse, arguing in analogy with the 1915 Sommerfeld theory of the 

atom, the first relativistic quantum theory described in immediately preceding UFT papers. 

The precessing ellipse produces a relativistic ham.iltonian operator which is_ developed in this 

note. In note 268( 4) expectation values are developed fro'm the fermion equation { 1 - 10}, the 

chiral Dirac equation ofECE theory, and prepared for comparison with note 268(3). Some 



-1 !< 

details are given of the spin orbit hamiltonian and complete details in note 268(8) together 

with a description of the approximations used. Note 268(5) develops the theory further wi~h a 

Bohr type quantization for the classical angular momentum. In a fully consistent theory, 

reached in Note 268(9), a Schroedinger type quantization is used with a three dimensional 

hamiltonian expressed in spherical polar coordinates. 

In note 268( 6) the Bohr quantization is replaced by a Schroedinger quantization in 

the planar approximation using the phi ellipse (the ellipse in the angle f of the spherical 

polar coordinate system). This model is compared with the experimental results for p orbital 

spin orbit splitting in atomic hydrogen and x found to be close to unity as in the theory of · 

orbital precession. The origin of x is the ubiquitous Thomas precession, which is therefore a 

universal phenomenon occurring at all scales in the universe. This theory is described briefly 

in Section 2 of this paper but is still a rough approximation. It is developed further in Note 

268(7) and some remarks given on Eckardt quantization in the context of this planar elliptical 

approximation. For ease of reference Note 268(8) gives a complete description ofthe 

derivation of the spin orbit hamiltonian from the fermion equation, a derivation that includes 

some very rough approximations made by Dirac and others but which produces a range of 

important results as is well known. These include the g factor of the electron without radiative 

/ 
corrections, the Lande factor, the Thomas half factor, ESR, NMR and MRI. Finally in Note 

268(9) the completed three dimensional theory is developed, and it is shown that the relevant 

ellipse is the theta ellipse, which appears as a well defined part of the three dimensional 

theory. 
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2. DEVELOPMENT OF THE PLANAR PHI ELLIPTICAL APPROXIMATION AND THE 

THREE DIMENSIONAL THEORY. 

As described in previous papers on x theory in the UFT section ofwww.aias.us 

the hamiltonian for the planar phi approximation to relativistic quantum mechanics is: 

where-ti is the reduced Planck constant, m the mass of the electron, L the orbital angular 

momentum, r the distance between the electron and the proton in the H atom and + the 

hydrogenic wave function. The constant k is: 

where -e is the charge on the electron and f 0 the S. I. vacuum permittivity. The 

Schroedinger quantization: 

is assumed a priori, although for Eq. ( 1_ ) to be rigorously applicable a three dimensional 

theory is needed as developed later in this Section. As shown in all detail in Note 268(8) the 

hamiltonian from the fermion equation { 1 - 1 0} of relativistic quantum mechanics is: 

( ~ -~?) i ~ (-f._"lqJ i_ l- \:.s.\ i - (~..r) 
';}_,... (" ) 

so x can be found in this rough phi planar approximation by equating the right hand sides of 



-1 " 

Eqs. (~£ ~). It follows that: 

- (
-v 1. 

~So -"-

where V < \\ is the well known effective po;ntial of the Schroedinger equation ~I - I 0} : ( '\ 

\T - -~ + .e_({ -r-i}e;~ - ~ 
~ \.{\( E () f d..-vr._ < 

This phi planar theory is a first approximation but it is self consistent, because for 

~ - -h) 
the theory is non relativistic quantum mechanics, in which there is no spin orbit coupling: 

For self consistency the expectation values must be calculated numerically for each 

hydrogenic wavefunction using: 

~'> 
( 

_L 
( 

- f f~ ;: t clrt,- (\6) 

'[ ( t + 6C•.s [x&J. -(10 
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In these expressions the half right latitude and the ellipticity are given by: 

_ -Yil E. { ( -t + ~ t J _,_ ( '"~) 

and: 

\+-

Here n is the principal quantum number, and: 

~ -::.. 6) \) ~) . . . ) 

The j quantum number is defined by the Clebsch Gordan series: \ l 
~ ""- ..e_ -\- s) -e. -\- s - 1_) -- ' - ~ ~5) 

where s is the spin quantum number. 

For the 2p orbital ofH: \ - .) 

1 
d.._ eN s -,_ l 

1 
d._ - _ { \') 

If: . - 3/ d.. { -=- 1_ s "" I I~ - ( l-0 b ) } 

then 

and if: 



then: 

The observed splitting is therefore: 

and: 

with: 

Eq. ( d..\ ) is solved numerically in Section 3 to give x very close to unity. Clearly ifx were 

exactly unity there would be no spin orbit splitting. 

This result appears to suggest that x is a ubiquitous factor because its order of 

magnitude in planetary precession and the fine structure of atomic hydrogen is similar. This 

conclusion is consistent with the fact that x is du.e to the ubiquitous Thom~s precession as 

•' 

shown in preceding papers on x theory. Despite this self consistent conclusion however a 

fully correct theory must be three dimensional, and this is developed next. 



-I ~ 

The classical hamiltonian is: 

which in two dinlensions for a ::anar :bit :v: ( \ * f ( 0 s r) - ( d-0 
( cL 

where: 

1 J - { )e>) 
(~ - ~ t-ot t'v 

l 

The Bohr radius is: 

rr.e...-

so ( \-\ '> -
-t) -(~0 

~ -
:) Y\.. ( t>l -

and 

The + ellipse gives the expectation values: 



' -cL 
~ J_ - (rl"\ 

( . ') 
t 

for all hydrogenic orbitals with: 

~(>_)) 
( (oS 1 ') - 0 

for all orbitals. Therefore: - (>~) (J '> ~ J \~ 

for all orbitals. From Eqs. ( )l ) and ( )'+ ): 
.,.__Jt) (1~ L")'> ~ ~~ 't -

< 
-

for all orbitals. This means that: 
0 

--

in the non relativistic planar phi ellipse approximation the classical 
. . 
1s non-zero m 

general but its expectation value is zero. The planar phi ellipse is a consequence of the planar 

which originates from the fact that the linear velocity in spherical polar coordinates is: 

':{_ _ ~ :t_< -\- f 6 ~ e T ( S<"-e f !_f -(1~ 
So the lagrangian in three dimensions is: 



1) The equation 

2) The equation 

-(w) 

and the 1 angular momen=: ) ; _ ( 4\+ \ 
L,~~( CJ. -J 

3) The equation: 

g1ves 
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and the constant angular momentum: • . ) 

LJ.. -=- ~' J 1 si"' e. 
So the two angular velocities are: 

L\ -(~~ • 
~e B 

-::.. - ~ .....::---
J1 ~( 

-(~") and L~ • Jj_ -
f - ~ l )_e -

ell ~( .St"-

Therefore 

l) L -(~) ) 

~~ '- --
1 

J,.k"} ~ ( 
y'h( 

where the total angular momentum is: 

The total classical L in three dimensions is quantized as: 

l)i ~ ~(~t~t"l+ -(>"J) 
as is well known. 

Eq. ( So ) is now transformed into a Binet equation using: 

t-(~) -(sj 

in which J.e/ t is defined by Eq. ( 4--~ ): 



~ Nowuse: 

so: 

and: 

- (6~) 
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and upon quantization 

where: 

~ 
-=- ~..e._ 

3 ~'f\)f; t) ~ "l 

and the total energy levels are: 



In order t · 

t ":0- !__ H ) _, , 

~ (~ '>- ( ~ '> 
~ 

-:.. ~.e. 

))~) t,?{ ') ~") lbi\Jt-)-9-) ~ 
0 'h h. 

o Introduce relativistic effects the 1 & 
( b \ ) becomes ang e is changed to )( (} . The ellipse 

where: 

-::: \ -
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It is also possible to evaluate the effect ofx ~n Eq. ( bl ): l < \ ) 
J.. ( ) ~ , 'J < ' \ +- Ll J " ~ ~ +-~ 1 1 - .)sl·._.J.e 

'~ I a~ "J.~ < ~n--. ' 
-(-n+) 

by using: 

So: 

and: 

and can be compared with results from atomic fine structure such as spin orbit interaction. 
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3 Calculation of expectation values

The parameters of the ellipse, Eqs.(12,13), are in atomic units (with Schroedinger
quantization):

α =
L2

mk
= l(l + 1), (79)

ε =

√
1 +

2E L2

mk2
=

√
1− l(l + 1)

n2
(80)

The elliptic orbits for the precessing φ and θ ellipse are:

rφ =
α

1 + ε cos(xφ)
, (81)

rθ =
α

1 + ε cos(xθ)
. (82)

The spin orbit splitting is given by Eq.(9) and is in a.u.:

〈Eso〉 = (1− x2)

(〈
1

r

〉
− l(l + 1)

2

〈
1

r2

〉)
. (83)

The expectation values 〈Eso〉 have been calculated according to this equation
for the φ and θ ellipse. The results with Hydrogen orbitals for the φ ellipse
are given in Table 1. The corresponding values for the θ ellipse are highly
complicated and not shown. As expected, there is no splitting for s states.
The x dependence of the splitting has been graphed in Fig. 1 for 2p states
of Hydrogen orbitals. The splitting is classi�ed according to non-relativistic
quantum numbers. The realistic range is a very small interval around x = 1
where the splitting is exactly zero due to the factor 1−x2 in the results. Eckardt
quatization requires x = 2, 3, ... which is completely out of spin orbit splitting
range and is in the order of energy splitting of principal quantum numbers.

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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As an example we compare the 2p 1/2 - 2p 3/2 splitting of Hydrogen with
the experimental value and calculate the corresponding x value for this splitting.
The experimental splitting is given by

∆E = 0.365 cm−1 = 4.52542695 · 10−5 eV. (84)

This is very small but detectable. We calculated the corresponding theoretical
value �rst by standard theory and then by x theory. To obtain the value of
Schroedinger/Dirac theory we used the �rst formula of Eq.(9) which involves the
j quantum numbers and the expectation value < 1/r3 >. For this expectation
value we had to insert the usual r coordinate, not an ellipse. The result coincides
with the above experimental value within 10−8 eV which is excellent agreement.

For computing the splitting with x theory we have to �nd the experimentally
correct value of x. From Eq.(9) or (83), respectively, we obtain a function of
f(x) which must be equal to the experimental value, i.e. we have to solve

f(x)−∆E = 0 (85)

which is a numerical root �nding problem. The results for both ellipses are
given in Table 2. The deviation from unity is of order 10−6 and extremely
small, therefore not visible in Fig. 1. The values di�er slightly according to
ellipse and non-relativistic orbital type.

The other calculations refer to the relativistic e�ects introduced by the x
factor in the total energy calculations from Eq.(70) onward. The r coordinate
has to be replaced by the precessing φ or θ ellipse. The expectation value (71),〈

1

r

〉
=

∫
ψ∗ 1

r
ψ dτ, (86)

will be discussed later. In Eqs.(72,73) the kinetic energy operator has been
decomposed according to its radial and angular parts:〈

∇2
〉

=
〈
(∇2)1

〉
+
〈
(∇2)2

〉
+
〈
(∇2)3

〉
(87)

with 〈
(∇2)1

〉
=

∫
ψ∗ 1

r2
∂

∂r

(
r2
∂ψ

∂r

)
dτ, (88)

〈
(∇2)2

〉
=

1

x2

∫
ψ∗ 1

r2 sin(xθ)

∂

∂θ

(
sin(xθ)

∂ψ

∂θ

)
dτ, (89)

〈
(∇2)3

〉
=

∫
ψ∗ 1

r2 sin2(xθ)

∂2ψ

∂φ2
dτ. (90)

The expectation values for the φ ellipse are given in Table 3. For the 1s state they
vanish. The analytical solutions - although existing - are partially so complicated
that it makes no sense to display them. The same data are presented for the θ
ellipse in Table 4. They are even more complicated, and no analytical solutions
exist for the θ and φ components of kinetic energy.

The last group of formula evaluations refers to the semi-classical results (74-
78). For the φ ellipse, these are manageable, as far as analytical solutions exist
(Table 5). For the θ ellipse they become more complicated again, see Table 6.
The expectation values of < k/r > which also appear in Eq.(70) as mentioned
before, also depend on x as expected. For a non-precessing ellipse the result
would simply be 1/α1.
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n l ml Eso
1 0 0 0
2 0 0 0

2 1 0,±1
(
1− x2

) (k
(

sin(2π x)√
2

+2π x
)

4π a0 x
−

~2
(

sin(4π x)
2 +2

5
2 sin(2π x)+10π x

)
32π a20mx

)
3 0 0 0

3 1 0,±1
(
1− x2

) (k
(√

7 sin(2π x)
3 +2π x

)
4π a0 x

−
~2

(
7 sin(4π x)

9 +
8
√

7 sin(2π x)
3 + 100π x

9

)
32π a20mx

)

Table 1: x-dependent spin orbit splitting for Hydrogen, φ ellipse.

exp. value of orbit x
φ ellipse, ml = 0,±1 1.00000147920
θ ellipse, ml = 0 1.00000158486
θ ellipse, ml = ±1 1.00000123266

Table 2: x value for 2p 1/2 - 2 p 3/2 spin orbit splitting of Hydrogen.

n l m < (∇2)1 > < (∇2)2 > < (∇2)3 >
0 0 0 0 0 0

1 0 0 − 3 (sin(4π x)+8 sin(2π x)+12π x)
16π α2

1 x
0 0

1 1 0 −
sin(4π x)

2 +2
5
2 sin(2π x)+10π x

16π α2
1 x

no solution 0

1 1 ±1
sin(4π x)

2 +2
5
2 sin(2π x)+10π x

16π α2
1 x

no solution no solution

Table 3: Contributions of energy expectation values for φ ellipse, Eqs.(70-73).

n l m < (∇2)1 > < (∇2)2 > < (∇2)3 >
0 0 0 0 0 0

1 0 0
3 (x2 cos(2π x)−cos(2π x)+16 x2 cos(π x)−4 cos(π x)−24 x4+47 x2−11)

8α2
1 (x−1) (x+1) (2 x−1) (2 x+1)

no solution no solution

2 0 0 very complicated no solution no solution
2 1 0 very complicated no solution no solution
2 1 ±1 very complicated no solution no solution

Table 4: Contributions of energy expectation values for θ ellipse, Eqs.(70-73).
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n l m < p2r/2m >
0 0 0 0

1 0 0 3 ~2 (sin(4π x)+8 sin(2π x)+12π x)
32π α2

1mx

1 1 0
~2

(
sin(4π x)

2 +2
5
2 sin(2π x)+10π x

)
32π α2

1mx

1 1 ±1
~2

(
sin(4π x)

2 +2
5
2 sin(2π x)+10π x

)
32π α2

1mx

n l m < 1/r2 >

0 0 0 −~2 (sin(4π x)+8 sin(2π x)+12π x)
16π α2

1mx

1 0 0 −~2 (sin(4π x)+8 sin(2π x)+12π x)
16π α2

1mx

1 1 0 −
~2

(
sin(4π x)

2 +2
5
2 sin(2π x)+10π x

)
16π α2

1mx

1 1 ±1 −
~2

(
sin(4π x)

2 +2
5
2 sin(2π x)+10π x

)
16π α2

1mx

n l m < 1/r2 sin2(xθ) >
0 0 0 no solution
1 0 0 no solution
1 1 0 no solution
1 1 ±1 no solution
n l m < k/r >

0 0 0 k (sin(2π x)+2π x)
2π α1 x

1 0 0 k (sin(2π x)+2π x)
2π α1 x

1 1 0
k
(

sin(2π x)√
2

+2π x
)

2π α1 x

1 1 ±1
k
(

sin(2π x)√
2

+2π x
)

2π α1 x

Table 5: Contributions to classical expectation values for φ ellipse, Eqs.(76-78).
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n l m < p2r/2m >
0 0 0 0

1 0 0 − 3 ~2 (x2 cos(2π x)−cos(2π x)+16 x2 cos(π x)−4 cos(π x)−24 x4+47 x2−11)
16α2

1m (x−1) (x+1) (2 x−1) (2 x+1)

1 1 0 very complicated
1 1 ±1 very complicated
n l m < 1/r2 >

0 0 0
~2 (x2 cos(2π x)−cos(2π x)+16 x2 cos(π x)−4 cos(π x)−24 x4+47 x2−11)

8α2
1m (x−1) (x+1) (2 x−1) (2 x+1)

1 0 0
~2 (x2 cos(2π x)−cos(2π x)+16 x2 cos(π x)−4 cos(π x)−24 x4+47 x2−11)

8α2
1m (x−1) (x+1) (2 x−1) (2 x+1)

1 1 0 very complicated
1 1 ±1 very complicated

n l m < 1/r2 sin2(xθ) >
0 0 0 no solution
1 0 0 no solution
1 1 0 no solution
1 1 ±1 no solution
n l m < k/r >

0 0 0 −k (cos(π x)−2 x2+3)
2α1 (x−1) (x+1)

1 0 0 −k (cos(π x)−2 x2+3)
2α1 (x−1) (x+1)

1 1 0 −
k

(
3 x2 cos(π x)√

2
− 9 cos(π x)√

2
−2 x4+ 3 x2√

2
+20 x2− 9√

2
−18

)
2α1 (x−3) (x−1) (x+1) (x+3)

1 1 ±1
k
(

9 cos(π x)√
2

+2 x4−20 x2+ 9√
2
+18

)
2α1 (x−3) (x−1) (x+1) (x+3)

Table 6: Contributions to classical expectation values for θ ellipse, Eqs.(76-78).
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Figure 1: Spin orbit splitting of Hydrogen 2p orbitals for φ and θ ellipse (a.u.).
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