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ABSTRACT 

The three dimensional orbit from the inverse square law of attraction is analyzed 

in spherical polar coordinates. The general solution is shown to be the beta ellipse, which is 

equivalent to precessing ellipses in the angles f and 8 of the spherical polar 

coordinates. The resulting orbits are graphed in spherical polar representation and equations 

given for their animation. In general, the orbit of a mass m attracted to a mass M by an 

inverse square law is three dimensional. The theory applies unchanged to the three 

dimensional classical orbit of an electron around a proton. This quantizes to the well known 

orbitals of quantum mechanics. Eckardt quantization occurs when the precession constant is 

an integer. This theory produces three dimensional fractal conical sections in mathematics. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 1 0} the x theory has been developed from ECE 

theory and applied to several phenomena self consistently. To date the x theory has been 

developed in terms of planar ellipses and a great deal of new information obtained. In general 

however the orbit due to the inverse square law of attraction is three dimensional. There is no 

reason why an orbit should be planar, and planar orbits evolve from early three dimensional 

orbits. In order to analyze three dimensional orbits the spherical polar coordinates are used in 

Section 2 to develop the theory. The angular momenta are evaluated from basic first 

principles of geometry, the spherical polar coordinates being a special case of Cartan 

geometry on which ECE theory is based directly. This procedure defines the angular 

momentum components. A lagrangian analysis is used to find the constants of motion of the 

system in terms of the angular momenta and the general solution shown to be the beta ellipse 

where beta is defined in terms of the angles ~ and e of the spherical polar coordinate 

system. It is shown that the beta ellipse is precisely equivalent to precessing ellipses in the 

two polar angles. The orbits are graphed in Section 3 as spherical polar plots. Two other 

solutions are analyzed in terms of the Z component of the hamiltonian and the component of 
J ,~ 

the hamiltonian defined by L - \.... '2.., where L is the total angular momentum and L "Z. its Z 

component. These are the components used in quantum mechanics as is well known. These 

orbits are also graphed and analyzed in Section 3. In general the precessing three dimensional 

ellipses evolve into three dimensional fractal conical sections with many interesting 

properties. This formalism is fundamental, so is applicable throughout mathematics, physics 

and astronomy. It characterizes three dimensional orbits'in general. Equations are given for 

the time evolution of the three dimensional orbit in preparation for animation. The animation 

would give the trajectory in three dimensions of m around M as governed by the inverse 
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square law of attraction. The same theory exactly applies to the classical three dimensional . 
motion of an electron around a proton attracted by the ~oulombic inverse square law of 

attraction. This classical three dimensional motion quantizes to orbitals as is well known. T.he 

Eckardt orbits are defined when the precession constants are integral, and this type of orbit is 

also graphed in Section 3. The two dimensional Eckardt quantization leads to an ellipse with 

superimposed de Broglie wave structure akin to Bohr quantization. 

2. SOLUTION FOR THREE DIMENSIONAL ORBITS. 

Consider the angular momentum vector in three dimensions { 11, 12}: 

-(1) L ( --
where r is the position vector and p the linear momentum vector. The angular momentum -
vector is conserved: 

dl ----tJ$ 
In spherical polar coordinates { 11}: 

\ -
~ 

r--

and: 

r -

Therefore the Cartesian components of angular momentum are: 

L - - V\- <) ( e s .~ f . * 1 s '._a cos e { 0 s f) -( s) l: - ~( ") l e (<>5 r - i s:~e (OS e S lk 1) -I') 
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and L J·) . ( 
"2. -=- Vh< Sif-_ e 1· _ -i) 

Each Cartesian co . mponent lS conserved d . an lS a constant of motion: 

elL~ _ -,- __.. 

cJl 

The total angular momentum is: 

and: 

and these are also conserved. 

-::... 0. 



-I ~ 

• J . . =>. ";) 8 
8 -\- f_ Sih. 

The angle beta is defined by: 

so the hamiltonian becomes: 

\i --

The solution of Eq. ( IS ) is the three dimensional function {1- 10, 12}: 

- (1~) ( --

which has the structure of an ellipse or conical section in general { 12}. The half right latitide 

and ellipticity are also three dimensional functions defined by 

d. _ L 1 f- J. .,. \ -\- J. Gl~ - (n) 
~ ) \'\,_~") 

In planetary motion of a mass m around a mass M the constant k is defined by: 

~ -=- ~nt& - ( l&) 

where G is Newton's constant. In Coulombic dynamics: 
"). 

e._, 

4-tf\ E-o 
where e is the proton charge and fo the vacuum permittivity. The total energy E is defined 

by the experimentally measurable semi major axis of the three dimensional ellipse: 

) 
\- E-

--

The Binet equation of the beta ellipse is { 1 - 10, 12}: 
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f - - l".} t!--1 t-l- -L~) 
-- -

4~) 
'( 

) 

~( 

For an inverse square law of attraction: 

L"J -~ -(:n) •• 
f 

-- ~( (1 3 
~{ 

so for an ellipse: 

self consistently. For a precessing beta ellipse: 

and the force law from the Binet equation becomes: ) 

') j)_ L ()2- 0_L_ 
\ ~ - ?C -~ ':l T ') r.-,.( 3 

-(0 
< 

giving the potential: -\- I x')- 0 L) - (:;9 
l ~ 

d._~( 

The hamiltonian is changed from: 

-~ _(_n) 
\~ -- '(" 

to: 

')~ 
. ') :) ) -()~ 

J 1- (x. -\ l 
\~ 

'") 

-\d..rr-
_-::>C.- d vr.. ( - '( 
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where the expectation values are: 

-(~q) 

- c~6) 

As described in detail in Note 269(3) the x factor can be defined as follows by comparison 

where: 



Here n is the main quantum number, j is the total angular momentum quantum number: 

5 ~ -e + s / ~ + .s - ' _) - .. ) \ e - .si ~ ( ~9 

and s is the spin quantum number. 

The classical beta lagrangian is: 

( 
) J . )\ 

1~ \h-- ~ -r~ ~) 

L(d~ 
J1 d~ 

The Euler Lagrange equation: 

Jl ---d~ --

gives the conserved total classical angular momentum 

\_ ":".. ~')-.. ( ") ~ - c 3'\) 

l ( \ + f ( oj ~ J.- (try so: 

and 

L - ') 

Vh( 
V\....~) 

~ 0- (4-0 
( H- fl•J ~):> 

This equation can be animated to give the trajectory r or beta as a function of time. The 

integral is analytical and is given by computer algebra or by the expressions in notes 269(6) 

and 269(7). 

The Euler Lagrange equation 

0 
• 

6e 



c J_ 4- . 
{' 4- r .s.·~-,. e 
- (_ 44-) 

so: 

where + s.-~e. ~ ( ys) 

These results are the same as those given earlier in this section from basic fundamentals of 

geometry. So the analysis is correct and self consistent. 

It follows that: 

L 

and that: 

So: 

L 

and the integration ofEq. ( \~)has been achieved. We arrive at the remarkable result that 
~ 

the beta ellipse is precisely equivalent toj;recessing ellipses in f : 
( --

-, 

J_'----

\-\- f- cos ( ~/j~e ~ \ t ~(6s p 
-(4l\l 



-1 " 

In general therefore three dimensional orbits precess on the classical non relativistic level. 

The Eckardt ellipses are defined by: 

L ... _... 

L4 
The trajectories ofthe three dimensional o~its afre ~ve~ b~ - ( S i\ 

t - ""'J_ - - ~f ---") ') 
~ L ( \\- f ( 1>5 p) I I;)_ 

J C))) {s~\ 
~ ~i~v e r . / 

I 

1. e. : 

L ·= ~~ '} l e-a 
and 

{~'~ 

-t -;. ~~J_ )-­
L. 

. -{?) 
6.? ~ 

\ +f(o5 ( f:/'~1J 
and the trajectories can be animated as functions of the constants: 

Ll ~ Lf - L-z. -( 5~) 

defined by: ') l; J - (ss) 
l~ 1-L-z. L) -\-Lf -

The above is a complete solution for any three dimensional orbit, and reduction to 

a two dimensional orbit occurs when: 

). 

It is also possible to graph the orbits and properties associated with the Z component of the 

angular momentum: 



whose hamiltonian is: 

The solution of this hamiltonian is: 

J\ _(s.~ 
\ -

\ \- f-\ ( oS 1 
- (b~ where: 

L~ l~ d, ~ -:::.. - ~ 4-8 
~ V\....~Si"~ 

_(b~ J 
and: 

t-") -:. \ + ) tl ~ \ -\- J.fl2 -
~1.s. 4 8 \ n-.~") n.... t \-... 

This type of ellipse, and its associated functions, are also graphed in Section 3. 

A third type of ellipse can be analyzed by using the result from fundamental 

geometry: 

so: 

Using: 
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- ---. ') J e 
~ ( Sl"'-

f -
it is found that: 

The complete hamiltonian: 

IS expressed as: \~ ~ -5 ~(~---<~ ~ L{ -t-LJ- L~ _!_ -/t1) 
: J )~{) '),._( ") '(' 

and can be 1 L ~ ) ) ana yzed in terms of and L -l 
~ \ ~ \i: ~ ~ :~~)to:an_l~ -t -{ b~ 

has already been anal d tU"" ~ V\.. ( j \ 
yze . The ty pe two hamiltonian is. 

~~ ~ ~ ~ "' ( ¥r) J ~ l?- L~ - L - { b ~ 
where: :;)_ 1\... ( ") '(' 

I J 1\ '/~ ( ~ ~ \.. L -l-z..J _ '-()) 
~<) 

and the ty . pe two ellipse is: 

( -:._ J__) 
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-b~. 
where: 

_L l L: -l~ ( \ ~cat-~Je) 
~). -

~~ 

and LJ- l~ ( l t d~?B) -l-u) 
') \ t ).~ 

c~ -
~~") 

These functions are also graphed and analyzed in Section 3. 

In conclusion, the analysis of three dimensional orbits reveals a far richer 

structure than the analysis of two dimensional orbits with the same inverse square law and 

this opens up new subject areas in mathematics, physics and astronomy in both classical and 

quantum mechanics in non relativistic and relativistic theories. 

3. GRAPHICAL ANALYSIS. 

Section by Dr. Horst Eckardt. 
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3 Graphical analysis

The analysis of three-dimensional elliptic orbits starts with the β ellipse repre-
senting the Hamiltonian (15). The angular momentum is given by L2 and Lφ as
constants of motion and the angular coordinates are coupled by Eq.(48). With
the given θ coordinate we obtain

β =
L

Lφ
φ sin2(θ). (74)

This de�nes the elliptic surface

r =
α

1 + ε cos
(
L
Lφ
φ sin2(θ)

) . (75)

The used parameters for the graphs are

α = 1, (76)

ε = 0.5, (77)

Lφ = 3, Lφ = 0.5 (78)

L = 3. (79)

Fig. 1 shows the elliptic orbital surface for Lφ = 3. The ellipsoid is opened at
one side, the orbits are not closed. The same surface is graphed in Fig. 2 with
Lφ = 0.5. Now the ratio L/Lφ is larger and the orbits are much more structured
to a kind of 3D spiral.

For the Eckardt quantization the factor x in

r =
α

1 + ε cos (x φ)
(80)

has to be constant and integral, leading to the condition

x =
L

Lφ
sin2(θ) = n = const. (81)
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†email: mail@horst-eckardt.de
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or

θ = asin

(√
Lφ x

L

)
. (82)

The orbital surface for x = 3 is graphed in Fig. 3. According to Eckardt
quantization, it has a threefold symmetry which can be seen better when the
surface is projected to ghe XY plane (Fig. 4). This is a three-dimensional
extension of the three-fold orbit in Figs. 6 and 7 of UFT Paper 266.

The LZ Hamiltonian (58) leads to angle-dependent ellipse parameters ε1 and
α1 given by Eqs.(59-61). For an ellipse the eccentricity is required to be in the
range ε1 ≥ 0 and ε1 < 1. For the �rst condition we obtain from (61):

2LZ
2E

k2m sin4 (θ)
+ 1 ≥ 0 (83)

which can be rewritten to

sin4 (θ) ≥ −2LZ
2E

k2m
. (84)

The energy E has to be negative. Condition (84) de�neds a minimum angle θ
which is demonstrated in Fig. 5. We see that for the given parameters

L = 4, (85)

LZ = 1, (86)

E = −0.05, (87)

k = m = 1 (88)

θ is not de�ned below 0.60 and above 2.54, that means the orbit is constrained
to an angular range of θ. This can directly be seen from the elliptic function

r1 =
α1

1 + ε1 cos(θ)
(89)

which is plotted in Fig. 5 too for φ = 0. The ε1 surface is a torus (Fig. 6), but
is not smooth at the origin as shown in Fig. 7 where only a quarter circle of
the φ coordinate has been shown. The α1 function is graphed in Fig. 8. It is
a double cone with a hole at the centre. The full surface r1(θ, φ) is an ellipsoid
combined with a double cone at one side (Fig. 9).

The third angular momentum orbits are for L2−L2
Z = L2

X +L2
Y . This gives

a θ surface with variable ε2 and α2 (Eqs.(71-73) similar as before. The two
conditions ε1 ≥ 0 and ε1 < 1 now give the restrictions

θ ≥ acot

(√
L− LZ

√
L+ LZ

LZ

)
(90)

and

θ < acot

(
1√
2LZ

√
2L2 − 2LZ

2 +
k2m

E

)
. (91)
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The range is relatively small for the parameters given in (85-88) as can be seen
in Fig. 10 where ε2(θ) and r2(θ) are graphed for φ = 0 (cf. Fig. 5). From Figs.
11-13 it is obvious that the small range of θ gives �at, rotationally symmetric
structures for ε2, α2 and r2(θ, φ).

Finally we investigated the time function t(θ, φ) as given by Eqs.(51-53).
Choosing the φ representation (53), this integral takes the form

t =
mα2

L

∫
dφ

(1 + ε cos(xφ))
2 =

mα2

Lx

∫
dφ′

(1 + ε cos(φ′))
2 (92)

with

φ′ = xφ =
L

Lφ
sin2(θ)φ. (93)

The integral is solvable analytically giving

t =
mα2

Lx

 ε sin (φ′)

(ε2 − 1) (ε cos (φ′) + 1)
−

2 atan

(
(1−ε) tan

(
φ′
2

)
√
1−ε2

)
√
1− ε2 (ε2 − 1)

 (94)

The result is graphed in Fig. 14 for L = 3, x = 1.1. At φ = xπ there is a jump
in the time scale because of the principal values of trigonometric functions. The
inverse curve φ(t) shows the typical behaviour of elliptic dynamics: Velocity of
the orbiting mass is at minimum and maximum near to the focal points, for
φ = 0 and φ = π.
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Figure 1: Orbital surface for L = 3, Lφ = 3.

Figure 2: Orbital surface for L = 3, Lφ = 0.5.
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Figure 3: Orbital surface for Eckardt quantization, x = 3.

Figure 4: XY Projection of the orbital surface for Eckardt quantization, x = 3.
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Figure 5: θ angle restriction for LZ : ε1(θ) and r1(θ) for φ = 0.

Figure 6: ε1 torus for LZ .
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Figure 7: ε1 torus for LZ , quarter view of φ.

Figure 8: α1 for LZ .
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Figure 9: φ orbit for LZ .

Figure 10: θ angle restriction for L2 − L2
Z : ε2(θ) and r2(θ) for φ = 0.
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Figure 11: ε2 surface for L2 − L2
Z .

Figure 12: α2 for L2 − L2
Z .
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Figure 13: θ orbit for L2 − L2
Z .

Figure 14: Time evolution of φ orbit.
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