
ORBITAL PRECESSION FROM ECE2 AND FROM THE LAGRANGIAN OF 

SPECIAL RELATIVITY. 

by 

M. W. Evans and H. Eckardt, 

Civil List, AlAS and UPITEC 

( www. webarchive.org. uk. www .aias. us, www. upitec.org. www .atomicprecision.com 

www.et3m.net) 

ABSTRACT 

The solution of the gravitomagnetic Lorentz force equation of ECE2 is expressed 

in terms of the lagrangian and hamiltonian of special relativity. The lagrangian is the classical 

Sommerfeld lagrangian and is solved by computer algebra and numerical methods. A scatter 

plot method is used to how that the true orbit is a precessing ellipse. This is not the 

Einsteinian result because the Einstein theory is incorrect in many well known ways. 

Therefore ECE2 gives a precessing ellipse, the exact experimental value for light deflection 

by gravitation, and the velocity curve of a whirlpool galaxy. 

Keywords: ECE2 theory, gravitomagnetic Lorentz force equation, the lagrangian of special 

relativity, precession of the perihelion. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 12}, the original second Bianchi identity of 

1902 has been developed into the Jacobi Cartan Evans (JCE) identity ofUFT313, and ECE2 

theory developed in several ways in terms of vector field equations and a relativistic and 

gravitomagnetic Lorentz force equation (UFT314 - UFT320, UFT322 - UFT324 ). In the 

immediately preceding paper it was shown that ECE2 gives the precisely correct experimental 

result for the deflection of electromagnetic radiation by gravitation, and also the correct 

velocity curve of a whirlpool galaxy. Both Einstein and Newton fail completely in a 

whirlpool galaxy as is well known (UFT288). In this paper the relativistic Lorentz force 

equation is solved to give the precession of the perihelion by using its equivalence to the well 

known lagrangian and hamiltonian of special relativity. 

As usual this paper should be read along with its background notes and 

supplementary postings of computer protocol on the blog of www.aias.us. Notes 325(1) to 

325(4) discuss various aspects ofthe solution ofthe relativistic Binet force equation and its 

integrated format discovered in UFT324. Note 5 derives the relativistic orbital velocity of 

special relativity from the lagrangian, Note 6 discusses the true orbit of special relativity, 

--. which is the correct orbit of a planet. Notes ( 1) to ( 4) contain several refutations of the 

Einstein method, which is also refuted definitively in Notes 9 and (9a), adding to the multiple 

refutations of the Einstein method, and refuting graphics, in UFT232. Section 2 ofthis,er>per 

is based on Notes 5, 7 and 8. 

In Section 3, the relativistic lagrangian is solved numerically, usin~ computer 

algebra, numerical integration as in UFT239, and a scatter plot method of producing the true 

orbit. This is the first time that the true orbit of a precessing planet or any other object has 

been derived without empiricism. The true orbit is not that of Newton or Einstein, and can 



only be approximated by x theory, developed extensively in previous UFT papers. 

2. DEVELOPMENT OF THE LAGRANGIAN AND HAMILTONIAN 

Consider the hamiltonian and lagrangian of special relativity. These are also the 

hamiltonian and lagrangian of ECE2, equivalent to the ECE2 Lorentz force equation as 

shown in immediately preceding papers. The hamiltonian of special relativity is: 

H 0 ~c._.":) -T \A -

and the lagrangian is: 1 
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where 

is the Lorentz factor, and where U is the potential energy. The well known Sommerfeld 

hamiltonian is: (Y- t)n-e-J T u - (4-) 
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J. 
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is the relativistic kinetic energy. The relativistic total energy is: 

Assume that the force of attraction between a mass m orbiting a mass M is given by the 



centrally directed gravitational potential energy: 

whose force law is the Hooke I Newton inverse square force law: 

The velocity v is defined by the infinitesimal line element of special relativity: 

- ( CJ -'-/;)tl\: 1 - ("1) 

where J..r( is the infinitesimal of proper time, the time in a frame moving with the 

particle, and where dt is the infinitesimal of time in a frame with respect to which the particle 

moves. It follows that the velocity in Eq. ( ~ ) is defined by: 
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-~ and where the angular velocity is: 

• . - (t:l) w B - ~e 
JJ:. 

As in UFT324 the two Euler Lagrange equations of this system are 
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Eq. ( \> ) gives the relativistic angular momentum: ( ?\ 
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and this is a constant of mo~ion such that: _ (!b) 
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Therefore the angular velocity is defined by: ( 0 
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Using the change of variable: 

it is found that: 

It follows as in UFT324 and notes to UFT325 that the velocity is defined by: 

0~~ (1; l~J)J ~? j-l:26) 
L e. 

~ ~ ~ ~ l ~ [ ~)) J ~--~__.,!_-:.____.__--~ 
~ -- J 

~ -t L"l ( ~ (~0) +-1-:; 
- - J'-\ < .( 

'). ') fJ.N 
r.-C 



~· 

) '-.{,) 
_., I< 

-=- . "\ "' f-1 ' ) \J~ - ) 
'\) 

~~ 
'·· 

\ \ f ~'<~;LtJ 
-

As shown in UFT324, Eq. ( ~ \ ) gives the precise correct result for light deflection by 

gravitation using: 

and ) "tl -
so the well known Newtonian deflection: 
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becomes the observed deflection: 
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is the distance of closest approach. 
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For the hyperbolic orbit of a star in a whirlpool galaxy: 
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Eq. (2) gives the relativistic velocity: 
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which goes to a plateau for infinite r: 

as observed experimentally. It is well known that the Einstein and Newton theories produce a 

velocity that goes to zero with infinite r, and fail completely in whirlpool galaxies. The 

Einstein theory fails completely due to omission oftorsion, and as shown in the 

accompanying Note 9, computer algebra and protocol, gives an exceedingly complicated orbit 

which diverges. It cannot be a correct description of nature because its geometry is basically 

incorrect. 

and 

where: 

and where: 

The conserved angular momentum of the Einsteinian theory is: 



l 
and it follows that: 
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The Einsteinian orbital velocity is: , , ~)-.~ -c~-v 
As - (;;,~) 

and at the distance of closest approach: 

the Newtonian light deflection due to gravitation is changed to: 

and this is not the experimental result ( 'J(, ), Q.E.D. The Einstein theory is clearly 

incorrect. 

The Euler Lagrange equation ( l~) gives the r~lativistic Leibnitz orbital equation: 



as shown in detail in Note 325(8). In the limit: 

Eq. ( ~' ) becomes the 1689 Leibnitz orbital equation: 
) 
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where the semi major axis is: 
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and in which the Newtonian orbit is the conic section: 

cL -

and this is plotted in Section 3, in which the important conclusion is made that the true orbit 

of a planet is given by the lagrangian of special relativity. Further work using supercomputers 

can increase the numerical precision of the present work to the point at which a comparison 

can be made with experimental data. It is already known that ECE2 gives light deflection in 

an exactly correct way as described already. 
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3 Lagrange theory and numerical solutions

3.1 Sommerfeld Lagrange theory

The Sommerfeld Lagrangian of Eq.(2) is

L = −mc2

γ
− U (48)

with potential energy, γ factor and velocity

U = −mM G

r
, (49)

γ =
1√

1− v2

c2

, (50)

v2 = ṙ2 + r2 θ̇2. (51)

The evaluation of Lagrange equations

∂L

∂r
=

d

dt

∂L

∂ṙ
, (52)

∂L

∂θ
=

d

dt

∂L

∂θ̇
(53)

gives from the Sommerfeld Lagrangian (48):

r̈ = −
c2GM + γ3 r4 ṙ θ̇ θ̈ +

(
γ3 r3 ṙ2 − γ c2 r3

)
θ̇2

γ3 r2 ṙ2 + γ c2 r2
. (54)

and

θ̈ = −
γ2 r2 ṙ θ̇3 +

(
γ2 r ṙ r̈ + 2 c2 ṙ

)
θ̇

γ2 r3 θ̇2 + c2 r
(55)
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Both equations contain the second derivatives of r and θ in linear form. To
obtain an equation set useable for numerical integration, both θ̈ and r̈ have
to be separated �rst. From the two equations with two unknowns (54,55) the
solutions are

r̈ =

(
−γ2 v2 + γ2 ṙ2 − c2

)
GM + r

(
γ3 v4 + γ c2 v2

)
+ r ṙ2

(
−γ3 v2 − γ c2

)
r2 (γ3 v2 + γ c2)

,

(56)

θ̈ =
γ ṙ θ̇ GM + r ṙ θ̇

(
−2 γ2 v2 − 2 c2

)
r2 (γ2 v2 + c2)

. (57)

These are the relativistic Lagrange equations for central motion in a two-dimensional
polar coordinate system. The non-relativistic form of them is obtained by as-
suming γ ≈ 1 and making the transition c→∞ which leads to

r̈ = r θ̇2 − GM

r2
, (58)

θ̈ = −2 ṙ θ̇

r
. (59)

These are exactly the non-relativistic equations from Newton theory.
For comparison we also investigate the equations of motion from x theory.

The x potential is given by

U =
L2
(
x2 − 1

)
2mr2

− L2 x2

αmr
. (60)

With the half latus rectum

α =
L2

m2M G
(61)

the non-relativistic Lagrangian

L =
1

2
mv2 − U (62)

is

L =
mx2GM

r
−
L2
(
x2 − 1

)
2mr2

+
m
(
r2 θ̇2 + ṙ2

)
2

(63)

which leads to the non-relativistic Lagrange equations with x correction:

r̈ = −x
2GM

r2
+
Lm2

(
x2 − 1

)
m2 r3

+ r θ̇2, (64)

θ̈ = −2 ṙ θ̇

r
. (65)

The equation for θ̈ is unchanged. For x = 1 the non-relativistic equations are
obtained. For x < 1 a negative contribution of 1/r3 is added to the radial force
component, leading to a precession of the ellipse in the direction of the orbital
motion which is observed for the planet Mercury.
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Figure 1: Newtonian and relativistic velocity ratio v/c.

3.2 Velocity comparison

For a graphical examination of the results, we �rst will examine the graphs of
the velocities. As was shown in Eq.(21) of section 2, the non-relativistic velocity
is given by

v2N =
v2

1 + v2/c2
(66)

where vN for an ellipse is given according to Eq.(44) by

v2N = M G

(
2

r
− 1

a

)
(67)

with a = α/(1− ε2) being the major axis. Solving Eq.(66) for v gives

v2 =
v2N

1− v2N/c2
. (68)

By inserting (67) into (68), v and vN can be compared in their radial depen-
dence. The ratios v/c and vN/c are graphed in Fig. 1. All parameters were
set to unity. For r → 0, the classical velocity diverges to an in�nite value. For
the relativistic velocity, this happens for vN = c where we have vN = 1 in the
actual scaling. This behaviour motivates an alternative de�nition for v′ and v′N
with reversed signs in the denominator:

v′2N =
v′2

1− v′2/c2
, (69)

v′2 =
v′2N

1 + v′2N/c
2
. (70)
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Figure 2: velocity ratio v/c for non-relativistic (Newtonian) and relativistic case,
and for two values of x theory.

This e�ectively leads to an alternative relativistic velocity curve v/c which ap-
proaches unity for r → 0 as expected (green curve in Fig. 1). Otherwise the
case v = c is reached at a much higher r value. However the non-relativistic
formula of the orbit has been used in (67) which may be a source of an error,
and the elliptic orbit is de�ned only in a restricted range of r.

It was shown earlier that the classical velocity in case of x theory correction
is

v2x =
L2

α2m2

(
α
(
x2 + 1

)
r

+
(
ε2 − 1

)
x2

)
. (71)

To make this comparable with Eq.(67), we replace L2 by

L2 = m2M Gα (72)

and obtain

v2x =

(((
ε2 − 1

)
r + α

)
x2 + α

)
GM

αr
. (73)

From (67) and (68) then follows

v2N =

((
ε2 − 1

)
r + 2α

)
GM

αr
, (74)

v2 =

((
ε2 − 1

)
r + 2α

)
GM c2

((ε2 − 1) r + 2α) GM + α c2 r
. (75)
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With parameters set to ε = 0.3, c = 3, all other parameters unity, we can
compare all three velocity expressions. The results are graphed in Fig. 2 for
two values of x = 0.75 and x = 1.4. These are the velocities for a precessing or
non-precessing ellipse in the high-relativistic case up to v/c = 0.5. The curves
v(r)/c are plotted in the range [rmin, rmax] of an ellipse with α = 1. It can be
noticed that the relativistic curve (thick line) is not covered exactly neither by x
theory nor by Newton theory. The latter underestimates velocity at perihelion.
Using x = 0.75 (red line) �ts the velocity of x theory near to the aphelion but
underestimates it at perihelion. Values for x > 1 cannot remedy this because
the slope becomes too large. The true theoretical orbit is the one from the
Lagrangian of special relativity, which is also the one from ECE2 theory.

3.3 Numerical solution of relativistic orbits and control

parameters

The equations (56-57) have been solved numerically as for example in UFT
paper 239 (but we used θ as the integration variable therein, while we use the
time in this work). The results r(t) and θ(t) can be combined in a so-called
scatter-plot in a polar coordinate system to obtain the orbit r(θ). So the orbit
is not given by an analytical formula in this case but numerically by "points".
The result is graphed in Fig. 3, showing directly the precession of the ellipse.
Orbital motion is in positive mathematical angular direction as is the rotation
of the elliptic orbit. This is in coincidence with astronomical �ndings.

There is additional information that can be obtained from the solutions r(t)
and θ(t) and their derivatives. Important checks are the constants of motion:
relativistic angular momentum and energy. We validated that the relativistic
momentum is conserved as well as the relativistic energy (Hamiltonian). Fig.
4 shows the ratio v/c which is minimal in aphelion as expected. The same
holds for the di�erence of the r component of force and the angular momentum
between relativistic and non-relativistic calculation (Fig. 5). The total energy
is identical to the non-relativistic case at aphelion (Fig. 6).

We did the same numerical calculation for the potential of x theory. In the
Newtonian case (x = 1) the well known ellipses follow, for the x theory the
precessing ellipses, all numerically, and can be compared with the relativistic
solution. It is a bit di�cult to de�ne comparable x factors for the relativistic case
because there is no analytically given orbit and both theories show quantitatively
di�erent behaviour, see discussion of Fig. 2 above. The initial conditions do
not re�ect expressions like ε and α, one has to use r, θ, ṙ and θ̇ primarily,
where we pre-computed θ̇ from the same value of given non-relativistic angular
momentum in all cases. Fig. 7 shows the precessing orbit for x = 0.98. The v/c
ratio (Fig. 8) looks similar as for the relativistic theory, The force di�erence
changes signs in the orbit and the angular momentum is the same as in the
non-relativistic case, i.e. ∆L = 0. The di�erence of total energy (Fig. 10)
shows more variation than in the relativistic case.

The numerical calculations have shown that the solution of relativistic La-
grange equations is a parameter-free, �rst-principles method of solving the rela-
tivistic Kepler problem. It will be di�cult however to obtain orbital precession
values for real planets because these e�ects are very small and require very high
numerical accuracy.
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Figure 3: Orbit from relativistic theory.

Figure 4: Ratio v/c from relativistic theory.
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Figure 5: Di�erence of force component Fr and angular momentum L between
relativistic and Newton theory.

Figure 6: Di�erence of total energy E between relativistic and Newton theory.
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Figure 7: Orbit from non-relativistic x theory, x = 0.98.

Figure 8: Ratio v/c from non-relativistic x theory.
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Figure 9: Di�erence of force component Fr and angular momentum L between
x theory and Newton theory.

Figure 10: Di�erence of total energy E between x theory and Newton theory.
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