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ABSTRACT 

The existence of precessing elliptical orbits from special relativity is confirmed 

with numerical and theoretical methods used to find the true orbit using equations of special 

relativity based on the Lorentz covariance ofECE2 theory. The true orbit is given by a 

numerical solution using the lagrangian and hamiltonian of special relativity. The results are 

analysed graphically in several ways. The analyitcal methods are based on the hamiltonian, 

lagrangian and infinitesimal line element of special relativity. The analytical problem is in 

general intractable, but the numerical solution clearly shows precession. 

Keywords: ECE2 theory, precession of the perihelion with ECE2 special relativity. 



1. INTRODUCTION 

In recent papers ofthis series of over five hundred papers and books on 

ECE and ECE2 theory in English and Spanish { 1 - 12}, the ECE2 theory has been developed 

from the Jacobi Cartan Evans (JCE) identity ofUF 313. ECE2 is simpler than ECE and 

makes use both of non zero torsion and non zero curvature. From about UFT324 onwards the 

Lorentz covariance of ECE2 special relativity has been used to show that the precession of a 

planar orbit can be described by special relativity. Several further refutations of the 

Einsteinian general theory have been given, notably in UFT327, so the Einstein theory is 

thoroughly obsolete. In ECE and ECE2 new explanations have been found for the claims of 

Einsteinian general relativity (EGR), notably the precession of the perihelion, the subject of 

this paper. 

This paper should be read with its background notes, posted with UFT328 

on \\<'Ww.aias.us. In note 328(1) a general analytical method is developed based on the general 

precessing orbit. In Note 328(2) an initial investigation is made of a key concept in special 

relativity, the ratio pI L of the linear to the angular momentum. In general this ratio is 

relativistic, and the numerical results of Section 3 show that it can be computed from the 

lagrangian and hamiltonian of special relativity to give the true orbit without the intercession 

of any type of additional hypothesis or modelling. The ratio p I L has been investigated in 

several previous UFT papers of recent years using theories of the infinitesimal line element. 

ECE2 special relativity is preferred to all these theories because it is simpler. In note 328(3) 

it is shown how the orbit is related to the ratio p I L, so if the latter can be found the orbit can 

be found. In Note 328(4) a simple analytical approximation is used to develop the ECE2 

theory of orbits, and in Note 328(5) a hamiltonian method is developed. 
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These notes are briefly summarized in Section 2, and the notes should be . 
read with Section 2. In Section 3 various graphical r~sults are given which show that the orbit 

of ECE special relativity is a precessing ellipse. 

2. A SUMMARY OF ANALYTICAL AND COMPUTATIONAL METHODS. 

'Consider the lagrangian and hamiltonian of special relativity, respectively: 

J 
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Here 1 is the Lorentz factor: 

-0) (\- 1 

"{ J1 - '-'o --... j. -
tl't G 

defined directly from the infinitesimal line element of special relativity { 1 - 12}: 

( J. ek-e i -=- (_ c,?·- '-C :) Jl- ~ - (4-') 

In these equations the gravitational potential is: 
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where a mass m orbits a mass M separated by a distance r . The orbit is considered to be -
planar and is described by the plane polar coordinates (r, . e ). In the infinitesimal line 

element r( b; the proper time in a frantmoving with m: and t the time in the frame of an 

observer, with respect to whom the mass m moves with a velocity v. The latter is the classical 
II 



velocity defined by: 
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In the classical limit these equations reduce to the Leibnitz equation: 
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In order to deduce the relativistic orbit the ratio p I L must be computed, and this can be done 

usmg: 

and 

giving various results graphed in Section 3. 
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The relativistic velocity v is defined by -
-

and the relativistic momentum is: 

- -· -
The relativistic angular momentum is defined from the lagrangian analysis by: 

and is a constant of motion. The other constant of motion is the relativistic hamiltonian ( ~ ). 

The relativistic momentum is not a constant of motion and in terms of proper time it is 

defined by: 

The relativistic Leibnitz equation of orbits is: 

which must be solved with: 

L 

From the infinitesimal line element of special relativity, Eq. ( 4- ), it is found that: 

( lc)~ ~ ~ u ~ )~ + f ~) -(l~ 
where p I L is the relativistic ratio. It is shown graphically in Section 3 that the relativistic 

ratio is not the same as the classical ratio ~ •I L t , and the relativistic ratio must be 



computed from Eqs. ( l ) and ( ~ ) which originate in the lagrangian ( 1. ). 
The hamiltonian ( l ) of special relativity can be written as: 

~-=- ( 
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In this expression pis the relativistic momentum, so: 

From Eq. ( ): 

so: 

In the limit: 

') 
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Eq. ( J..o ) reduces to the classical hamiltonian: 
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Therefore the transition from classical dynamics to special relativity may be described as 

follows: 



The classical kinetic energy transforms as follows: 
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and the classical hamiltonian transforms as: 
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In general, the Hamilton and Euler Lagrange equations may be applied to the 

problem and in general E depends on the Lorentz factor defined from the metric ( Lt. ) as: 

\ ll- t{ J - c~0 --J:C ") 
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In the Dirac approximation it is assumed that: 
') -l>0 '1 (( [ r-..J V'h.v v n...c 

) 

and so E is approximated by the rest energy: 

--

This is a rough approximation which is accepted because it works. The accurate results are 

given in Section 3 from the numerical method. These can be applied not only to precessing 

orbits but also to the Dirac and Sommerfeld atoms, and that will be the subject ofUFT329. 

As can be seen from Section 3, the Lorentz factor gamma is defined directly from the 



However the graphics show clearly that the relativistic ratio p I L is not the same as the 

classical ratio p 
6 

/L 
0 

. These considerations are developed in the notes. The true orbit 

is the one obtained from Eqs. ( l ) and ( ~ ). The true orbit can be compared with 

models such as the x theory: - (>4-) 

and a model of the general precessing orbit: 

(~ ~ 
\ t-f- l•s ( e,( e)) 

and various analytical approximations to the numerical orbit can be obtained as described in 

detail in the notes for UFT328 on www.aias.us. 
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3 Numerical analysis

The Lagrangian of special relativity is

L = −mc2

γ
− U (36)

with potential energy

U = −mM G

r
. (37)

The resulting Lagrange equations are Eqs.(7-8) of this paper which were derived
in UFT paper 325.

The orbital derivative is given by (setting θ̇ = ω):

dr

dθ
=
dr

dτ

dτ

dθ
=
dr

dt

dt

dθ
=
ṙ

ω
. (38)

We obtain for the relativistic ratio of p/L:

p

L
=

γmv0
γmr2ω

=
v0
ωr2

(39)

with constituting equations

v0 =
√
ṙ2 + r2ω2, (40)

v = γv0, (41)

γ =
1√

1 − v20/c
2
. (42)

The numerical results are compared with the corresponding results of the non-
relativistic, Newtonian Lagrangian

LN =
1

2
mv20 − U. (43)
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The relativistic and non-relativistic calculations started at θ = 0 with the
same radius and initial angular velocity. Therefore the angular momenta were
not the same at the starting point. It is however not possible to use the non-
relativistic L0 in the relativistic equation because this is not a constant of motion
there. From Fig. 1 (orbits) it can be seen that the relativistic orbit is signif-
icantly larger for identical initial conditions. This is a hint that it makes no
sense to use an equation for the non-relativistic orbit in a relativistic context.
The orbital derivative dr

dθ is graphed in Fig. 2. Since the derivative takes both
signs, there are two overlapping elliptic curves in the polar plot (negative values
are represented by an angular shift of π).

The graph of ṙ (Fig. 3) is a circle in the non-relativistic case which is run
through twice because of the symmetry with sign change for a full ellipse. In
the relativistic case the precession leads to a splitting of the circle which can
well be observed in the �gure. The angular velocity (Fig. 4) remains positive
and shows the relativistic precessing behaviour as do nearly all other curves.

Fig. 5 shows γ(θ), this varies only between 1.00 and 1.03 for this particular
orbit although the orbital precession (graphed in Fig. 1) is signi�cant. The ratio
v/c (Fig. 6) is dominated by the angular velocity component of v and therefore
resembles ω (Fig. 4). The ratio p/L (Fig. 7) looks also very similar due to its
dependence on v. There is always a bend in the curves at the aphelion. The
di�erences between Newtonian and relativistic results for linear momentum,
angular momentum and force have already be shown in UFT paper 325.

It is of some interest to inspect the angular dependence of the orbits de-
scribed by Eqs.(34) and (35). The �rst problem is to �nd a meaningful method
for comparing the Newtonian and relativistic case since the maximum radius
(as well as the e�ective ε and time dependence) are di�erent. Therefore we used
the orbital derivatives

dr1
dθ

=
ṙ1
ω1

(44)

and

dr2
dθ

=
ṙ2
ω2

(45)

for the Newtonian (r1) and relativistic case (r2). Both curves are crossing zero
at perihelion and aphelion and have been normalized so that they look identical
except their dependence on angle θ, see Fig. 8. The horizontal di�erence be-
tween both for a given ordinate value is a measure of the progression of angular
precession, see Fig. 8. The di�erence

∆θ = θ2 − θ1 for
dr1
dθ1

=
dr2
dθ2

(46)

has also been plotted in Fig. 8. It can be seen that there is no linearly growing
∆θ as assumed in x theory (Eq.(34)). Within the �rst orbit round (0-2π) the
di�erence becomes even negative just before approaching 2π. This is the most
realistic calculation of precession we have done in all papers so far.
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Figure 1: Orbit r(θ).

Figure 2: Orbit derivative dr/dθ.
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Figure 3: Radial derivative ṙ.

Figure 4: Angular velocity θ̇ = ω.
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Figure 5: Relativistic γ factor.

Figure 6: Ratio v/c.
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Figure 7: Ratio p/L.

Figure 8: Normalized dr/dθ for Newtonian and relativistic calculation, and
di�erence ∆θ(θ).
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