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ABSTRACT 

The geodetic and Lense Thirring precessions are calculated in the dipole 

approximation from the ECE2 gravitational field equations, using the concepts of 

gravitomagnetostatics in a Lorentz covariant theory in a mathematical space with finite 

torsion and curvature. The Lense Thirring precession is in exact agreement with the 

experimental data from Gravity Probe Busing an averaging procedure. The geodetic 

precession is in good agreement and can be refined to exact agreement with additional 

assumptions. 
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1. INTRODUCTION 

In recent papers of this series { 1-12}, the field equations of ECE2 unified field 

theory have been applied to precession phenomena in astronomy, and to other phenomena 

such as electromagnetic deflection by gravitation, in papers such as UFT324 and UFT328. 

Recently the Evans Eckardt theorem has been inferred and used to describe the Thomas 

precession and Lense Thirring precession from the foundational definition of relativistic 

velocity in a Lorentz covariant theory such as ECE2. The latter unifies special and general 

relativity by developing a Lorentz covariant structure in a mathematical space with finite 

torsion and curvature. This Lorentz covariant structure (UFT313 - 320, 322 - 344 on 

www.aias.us) gives the field equations of gravitation in precisely the same format as the field 

equations of electromagnetism. This is achieved with finite torsion and curvature. It is well 

known that the claims of the obsolete Einsteinian era of gravitational physics are incorrect 

because of the neglect of torsion. As shown in UFT99 and associated proofs on 

\:VWw.aias .. us, if torsion is zero so is curvature, and there is no geometry, reductio ad 

absurdum. This means that any geometrical theory of gravitation must be based on non zero 

torsion and curvature. The claims to precision of the Einsteinian era cannot be correct. This 

has been accepted at leading universities in van der Merwe's "post Einsteinian paradigm 

shift" which has generated an estimated 500 to 1000 million readings offww"\v.aias.us and 

W\VW.upitec.org (See for example UFT307) since 2002. These sites are archived on 

www.archive.org and www.webarchive.org.uk. 

This paper is a synopsis of calculations in the notes posted with UFT345 on 

W"\VW.aias.us. Notes 345(1) to 345(4) are preliminary groundwork, Note 345(5) is the 

calculation of the Lense Thirring effect in a simpl.ified geometry which is developed in Note 

345(6) and in Section 3, where an average value of the eff~ct is calculated. Note 345(6) gives 

the groundwork for the calculation of the geodetic effect, this calculation is refined in Note 
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345(8). 

In Section 2 the ECE2 field equations are applied to the geodetic and Lense 

Thirring precessions {1- 12} mistakenly attributed to the incorrect Einstein theory. The 

gravitational equivalent of magneto statics is used to describe both effects from the same 

starting equation, that of the gravitomagnetic field in the dipole approximation. Gravity 

Probe B measured both effects experimentally using precision gyroscopes, which are 

gravitomagnetic dipole moments. The earth's gravitomagnetic field creates a torque with the 

magnetic dipole moment on board Gravity Probe B. In the Lense Thirring effect the 

gravitomagnetic field is that of the spinning earth in a static frame fixed at the centre of the 

earth. In the geodetic effect it is the gravitomagnetic field of the earth in a spinning frame~ 

the spinning ofthe earth as seen from Gravity Probe B. 

In Section 3 the results are analysed numerically and graphically and checked 

with computer algebra. 

2. PRECESSION THEORIES. 

The calculation of the Lense Thirring precession in ECE was initiated in 

UFT117 on \\<WW.aias.us. The major advance since then is the emergence ofthe ECE2 

gravitational field equations. Consider, as in UFT117, the gravitomagnetic field ofthe earth 

in the dipole approximation: 

-
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were the earth is considered to be a spinning spqere. Here M is the mass of the earth, G is 

Newton's constant, R is the radius ofthe earth, r is the distance from the centre of the earth to 

Gravity Probe B, W is the angular velocity vector of the earth, and n is the unit vector 



defined by: 

-

The Gravity Probe B satellite was in polar orbit, orbiting in a plane perpendicular to the 

equator in a geocentric orbit. The angular velocity vector W of the spinning earth is: 

-
because the earth spins around the k axis perpendicular to the equator. The distance between 

the centre of the earth and Gravity Probe B is defined in the plane perpendicular to k: 
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The experimental inclination of ~vi tyro be B was almost exactly 90 

Therefore in the dipole approximation (see UFT117): 
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The Gravity Probe B spacecraft carried precision gyroscopes which are currents of mass and 

which are therefore gravitomagnetic dipole moments ( m ). The torque between the earth and 

the spacecraft is: -\~ 

As in UFT344 this torque produces the Larmor precession frequency: 
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which is the Lense Thirring precession. This paper uses the following data: 
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and the magnitude of the gravitomagnetic field of the earth from Eq. ( b ), in radians per 

second is: 

compared with the experimental value (UFT117) of . '\. -' ' - '"'""~s SL(S>x~ -=- \ • d.b )'- \o · 

More generally: 
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and 

·It therefore follows that: 
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Therefore the Lense Thirring precession is, from these equations: 

(t _ ~ s:~&J~ -~s:~Bc""O i_ 
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In Section three an average value of the precession is worked out and the latitude 

defined for precise agreement with the experimental data by Stanford I NASA. It is assumed 

that the experimental result is an average, because the Lense Thirring precession in general 

depends on the latitude. It is not clear how the Lense Thirring precession is isolated 

experimentally from the geodetic precession. This paper accepts the experimental claims 

uncritically. 

The analogue ofEq. ( 

where B is the magnetic flux density, and where }A tJ is the magnetic permeability. Here 

m is the magnetic dipole moment: - --

where -e is the charge on the electron, m is the mass of the electron, and L the orbital angular 
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momentum. The gravitomagnetic permeability ofthe ECE2 field equations is: 

A-1 ~ ~ (J.o\ 
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where c is the vacu~ed ofligh(; unive(r;:nstan~so3 ~ ( ~ ~ . ~) \ _ ()) 
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where the gravitomagnetic dipole moment~";) is defined in analogy to Eq. ( \ q ) by 

replacing -e by m, so fV\ j_ L -l )._).) 
-) ~ 

The angular momentum ofthe spinning earth considered as a sphere (UFT117) is: 

so 

Q.E.D. 
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The geodetic precession is calculated from the same starting equation as the 

Lense-Thirring precession: 

--

The vector r is defined by Eq. ( ~ ) because Gravity Probe B was in a polar orbit once 

every ninety minutes, giving an angular velocity of 
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As seen from a frame of reference fixed on Gravity Probe B, the earth rotates at a given 

angular velocity, generating the angular momentum: 

l yY\_, CJ -
for an assumed circular orbit, a good approximation to the orbit of Gravity Probe B. If it is 

assumed that: 

perpendicular to the polar orbit, then the theoretical geodetic precession is: 

SL !VL&-w .-[:1'\) 
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For the earth: 

If it is assumed that r is the distance from the centre of the earth to Gravity Probe B then: 

( {,b)x.tobv-... -l>0 

This gives a theoretical result of: _ \~ 
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The experimental claim by NASA I Stanford is: 

Sl ( .9.:( t) ~ \. 0 \~ Y--\0 

It is assumed that this experimental value is an average. 
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The theory is in good agreement with the experimental claim. rt.e-hs been assumed 



that the angular momentum needed for Eq. ( )5) is generated by a static earth in a rotating 

frame. The latter is the passive rotation equivalent to the active rotation of Gravity Probe B 

around the centre of the earth in a polar orbit once every ninety minutes. Exact agreement 
I 

with the experimental claim can be obtained by assuming an effective gravitomagnetic Lande 

factor, or by assuming that the rotating frame is described more generally by: 

and 
( -

In Section 3, computer algebra and graphics are used to evaluate the magnitude: 

?( t ~- ~ ~c ~. h~ \ -cj,) 
from Eqs. ( 1~) and ( ~ 5 ). Therefore exact agreement with the Lense Thirring and 

geodetic precessions can be obtained from the gravitational field equations of ECE2, which is 

a Lorentz covariant theory developed in a mathematical space with identically non zero 

torsion and curvature as required for any valid geometry, and any valid theory of relativity 

based on geometry. 

3. AVERAGING THEORY, COMPUTER ALGEBRA AND GRAPHICS. 
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3 Averaging theory, computer algebra and graph-

ics

Lense Thirring e�ect

For the Lense Thirring e�ect the gravitomagnetic �eld is calculated from Eq. (1)
which can be written

Ω =
2

5

MGR2

c2r3
ωx (37)

with the angular vectorial factor

x = ωn − 3n(ωn · n) (38)

containing the unit vector of angular momentum ωn. If ωn is perpendicular to
the radius unit vector n, it is

|x| = 1 (39)

while for ωn being parallel to n, we have

|x| = 2 (40)

so the modulus of x varies between 1 and 2. It is assumed that the experimental
value of Ω is an angular averaged value. We can determine this average value
as follows. For the special geometry of ω in direction of the Z axis and n in the
Y-Z plane, we have according to Eqs. (12-16):

x =

 0
−3 sin θ cos θ
1− 3 sin2 θ

 (41)
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and

x2 = 9 sin2 θ cos2 θ +
(
1− 3 sin2 θ)2

)2
(42)

= 4− 3 cos2θ.

The angular dependencies of x2 and x are graphed in Fig. 1, showing how x
varies between 1 and 2. In addition, the Y and Z component of the angular
vector x are shown. They are both crossing zero but at di�erent angles θ,
therefore the modulus of x is always greater than unity.

Taking the average of x2:

〈
x2
〉

=
1

π/2

∫ π/2

0

(4− 3 cos2θ) dθ (43)

gives the result 5/2. Assuming〈
x2
〉

= 〈x〉2 (44)

then we obtain

〈x〉 =
√
〈x2〉 =

√
5

2
= 1.5811. (45)

Multiplying the theoretical result (1.52 · 10−14 rad/s) by this value gives

Ω = 2.40 · 10−14 rad/s (46)

and a ratio

Ωtheory

Ωexp
= 1.91, (47)

this could correspond to an e�ective gravitomagnetic g factor of the Larmor
frequency:

g = 2 · 1.91 = 3.82. (48)

Another � perhaps more realistic � explanation of the deviation would be that
the momentum of inertia for the earth was calculated assuming a homogeneous
sphere, but the earth core has a much higher mass density than the earth mantle
so the angular momentum is smaller than that of a homogeneous sphere of equal
mass. The radii of the core and the average outer radius are

Rcore = 3.485 · 106m, (49)

Rearth = 6.371009 · 106m. (50)

About 35% of the earth mass is concentrated in the core, therefore the masses
of the core and the outer spherical shell (the earth mantle) are

Mcore = 0.35 · 5.97219 · 1024kg = 2.090 · 1024kg, (51)

Mmantle = 0.65 · 5.97219 · 1024kg = 3.882 · 1024kg. (52)
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The moments of inertia of earth core and mantle (a sphere and a spherical shell)
are

Icore =
2

5
McoreR

2
core = 1.015 · 1037kg m2, (53)

Imantle =
2

5
Mmantle

R5
earth −R5

core

R3
earth −R3

core

= 7.167 · 1037kg m2. (54)

The sum is smaller than the moment of inertia taken simply by the earth mass
and earth radius:

Iearth =
2

5
MearthR

2
earth = 9.696 · 1037kg m2 (55)

so that the ratio of both models is

Icore + Imantle

Iearth
= 0.8439 . (56)

So we have to multiply the results obtained for the gravitomagnetic �eld by this
value. From the second line in Table 1, where the results are listed, we see that
the minimal theoretical value (Lense-Thirring e�ect at the equator) coincides
very well with the experimental value within 1.6%.

Geodetic precession

The same calculation for the angular average as above can be done for the geode-
tic e�ect, described by Eq. (25). The angular factor is the same as for the Lense
Thirring e�ect so the angular average is identical to Eq. (45). The theoretical
value (3.675 · 10−13 rad/s, Eq. (32)) here is lower than the experimental value
(1.016 · 10−12 rad/s, Eq. (33)), therefore applying the average x factor leads to

Ω = 5.811 · 10−13 rad/s (57)

which is nearer to, but still below the experimental value. The averaging method
has been repeated with a more general position of the angular momentum axis:

ω = ωY i + ωY j (58)

i.e. the position has been tilted from the X axis. The highest value of angular
average x is obtained for a 45 degree's tilting (i.e. ωX = ωY ):

〈x〉 = 1.8587 (59)

corresponding to

Ω = 6.831 · 10−13 rad/s. (60)

Even for the maximum value x = 2 the result remains below the experimental
value. Translating x = 1.5811 into a geodetic gravitomagnetic g factor gives

g =
Ωtheory

Ωexp
= 1.49 (61)

and could be an explanation of the deviation. We conclude that all theoretical
results are close to the experimental �ndings. The numbers are comprehensively
listed in Table 1. A �nal assessment can only be done after all details of the
experiments have been understood.
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Theory min. Theory max. Theory av. Exp.
Lense-Thirring e�ect,
std. I 1.52 · 10−14 3.04 · 10−14 2.40 · 10−14 1.26 · 10−14

Lense-Thirring e�ect,
improved I 1.28 · 10−14 2.56 · 10−14 2.02 · 10−14

geodetic e�ect 3.677 · 10−13 7.354 · 10−13 5.811 · 10−13 1.016 · 10−12

geodetic e�ect,
modi�ed ω 6.831 · 10−13

Table 1: Theoretical and experimental values of gravitomagnetic �eld in units
of rad/s. I is moment of inertia, see text.

Figure 1: Angular factors x and x2, and Y and Z components of vector x.
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