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ABSTRACT 

By considering the minimal prescription ofUFT347 it is shown that a new type 

of precessing ellipse emerges from the relevant hamiltonian, so this is the simplest way of 

describing any precession. The Leibniz force equation is augmented by terms which include 

the observed precession frequency and is a Lorentz force equation. The relation between the 

hamiltonian and lagrangian is based on the canonical momentum. For a uniform 

gravitomagnetic field the force equation can be derived from a simple lagrangian, and the 

former can be expressed as a Binet equation. 
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1. INTRODUCTION 

In the immediately preceding paper (UFT34 7) of this series { 1-12} it was shown 

that the minimal prescription produces an orbital Lorentz force equation which gives rise to 

orbital precession through the intermediacy of the gravitomagnetic field. The precession 

frequency is half the magnitude of the gravitomagnetic field. In Section 2 of this paper it is 

shown that the hamiltonian corresponding to the Lorentz force equation gives a precessing 

ellipse of a type hitherto unknown. This precessing ellipse is a rigorous and accurate 

description of the observed orbit because the observed precession frequency is used in the 

equations. The calculated precessing ellipse is similar in structure to that of x theory { 1 - 12} 

but x depends on the plane polar angle theta. The method uses the canonical momentum of 

UFT347. For a uniform gravitomagnetic field the conserved angular momentum can be 

calculated straightforwardly, and the Lorentz force equation reduces to a precessional Binet 

equation. The orbit calculated from the hamiltonian can be used in the Binet equation to give 

the force. Section 3 is a description with graphics of the methods used to produce the 

precessing orbit and also gives numerical self consistency checks of the procedures used in 

this paper. 

This paper is a short synopsis of detailed calculations found in the notes 

accompanying UFT348 on W\VW.aias.us. Note 348(1) is a detailed description ofthe 

derivation of the precessing elliptical orbit from the hamiltonian relevant to the orbital 

Lorentz force equation. Note 348(2) gives some details of the development ofthe Lorentz 

force equation. Note 348(3) is a development of the precessional lagrangian, this note is 

developed numerically in Section 3. Notes 348(4) and 348(5) develop the force equation for a 

uniform gravitomagnetic field and deduce the pr~cessional Binet equation. 



2. DYNAMICAL DEVELOPMENTS 

Consider the minimal prescription ofUFT347: 

where 

is the gravitational vector potential of ECE2 relativity. This gravitational potential has the 

units of linear velocity. Herem is the mass of an object in orbit around an object of mass M. 

For a uniform gravitomagnetic field{~- 12}: ). ) 

~"d ..,_ SL ( 
where .£}_is the observed precession frequency. The latter is half the magnitude of the 

gravitomagnetic field defined by: 

--
This equation is directly analogous with the definition of the magnetic flux density as the curl 

of the electromagnetic vector potential W ofECE2 relativity. 

where U ( ( ) is potential energy of attraction between m and M: 

tt (_,) fhm Is 
{" 

where G is Newton's constant and r the magnitude of the distance between m and M. As in 

where Lis the constant magnitude of the angular momentum: 



and where _Q is the observed precession frequency, considered as a Larmor frequency 

where: 

where 

Using well known methods { 1 - 10} a hamiltonian of the type ( \ ~ ) leads to the conic 

section orbit: - (t~) 

where ~ is the half right latitude and where e is the eccentricity. 

Denote: 



to find that: 

If: 

then to an excellent approximation: 

I.e. 

So 

and: 

InEq. ( ~ \ ), W is the angular velocity corresponding to the hamiltonian 

This angular velocity is: 

where the angular momentum L 
0 

is a constant .bf motion. In Eq. ( }) ): 

-



therefore: 

\ --J. 
Cv 

and: 

This integral is evaluated numerically in Section 3. The orbit is: 

c{ 

and in Section 3 it is demonstrated numerically and graphically that this is a precessing orbit, 

Q.E.D. 

Therefore the minimal prescription ( 1._ ) is enough to produce a precessing orbit. 

In the x theory of previous UFT papers { 1 - 12} it was assumed that: 

e, ~ -x_B - ( :1 ~) 
where X is a constant. In this more accurate analytical theory it is seen that X depends on e 
The most accurate theory of precession in ECE2 relativity is UFT328, which is rigorously 

relativistic and uses the canonical momentum to solve the relativistic hamiltonian and 

lagrangian simultaneously. However UFT328 uses a numerical scatter plot method to produce 

precession and does not have a known analytical solution. The method in this paper uses 

ECE2 relativity to give an analytical solution in the classical limit of the hamiltonian and 

lagrangian. This paper has the advantage of giving an analytical result in terms of the 

experimental precession frequency, ..r2.., so the method of this paper is valid for ANY 

precession observed in astronomy. 

In the above equations the constant angular momenta are: 



The half right latitudes are: 

L
J 

c{~ 
~YVLb-
~-

and the eccentricities are: 

and 

In general: 

and the integral can be evaluated analytically using computer algebra as in Section 3. If it is 

assumed that: 

then: - ~ + _l_ )( - - ).8 

and the orbit can be put in the format of an orbit of x theory: 



f -

However, xis not constant in general. 

The orbit ( 'll ) is plotted in Section 3 and is shown to precess, Q. E. D. It is 

equivalent to the orbital Lorentz force equation of UFT34 7: 

~~ -=- -~Dl&- ~. +-~J~d 
dt 

f - () 

• 

in which the canonical m:T is defi~~d by-\- ~ '{ ') . - c 
6 
"') 

In the absence of the gravitational vector potential '{j, Eq. ( '!:,~)reduces to the Leibnitz 

equation • • • '} \ m__ (; _ I u) 
F -=-~l~ -'(e J~~ ~-~ ~. l/ 

.(J. 

in which: •• - cl; ---Jt 
Therefore the Leibnitz equation is: 

and can be transformed to the Binet equation: 

' 
The Leibnitz equation gives the non precessing conic section: 



It follows that: 

Here: 
' -

~ -=- Xi_tii -r--zi ~ (< ~~ -(s-) 
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and: •• ( ~ _ R·e ~)!_., -(s~ R -::.. --
for a planar orbit. 

Some considerations of the lagrangian corresponding to this general equation are given in 

Note 348(3) and Section 3. 

However, the hamiltonian ( l ) and the orbit ( \ '-t ) are based on a uniform 

gravitomagnetic field defined by: 

and: 

-
As in Note 347(2): 

and if the gravitomagnetic field is perpendicular to the plane of the orbit: ") 
'") ~ ').. ") n . 

"6 -=- ~ ...JL.'11 ( -:... ...;,. L.. 



The rotational Euler Lagrange equation is: 

)1 -;: 0 ~ 
oe 

from which the conserved angular momentum is defined: 
) . 

l-;_ ~( e. 

in which: 

This is the Lorentz force equation of the precessing orbit ( \ \.r-), and as in Note 348(5) can 



be transfonne; t( :~ p=~e=on~ ~inet eq(':';1: _ I J_ \ 

') - v.._( ~ MJ .,_l <) 
3. NUMERICAL AND GRAPHICAL ANALYSIS 
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3 Graphical and further computational analysis

The precession factor x, de�ned by Eq. (36), is not constant and dependent
on the angle θ. The integral can be solved analytically, yielding a lot of terms,
whose leading term is a periodic atan function:

x = 1 +
A

θ

∫
dθ

(1 + ε0 cos θ)4
(69)

= 1 + a
A

θ
atan

(
(ε0 − 1) sinθ√
1− ε20 (cosθ + 1)

)
+ . . .

with constants A and a. This function x(θ) is graphed in Fig. 1. It scales to be
slightly larger than unity. The periodicity of 2π is visible but not exact because
(36) is an approximation. The factor of 1/2θ in (36) obviously outperforms the
integral. The orbit (37) is shown in Fig. 2 for x = 1 and x(θ) given by Eq. (69).
This results in a precessing ellipse as can clearly be seen.

Some variants of the Lagrangian for the Lorentz force equation are investi-
gated in the following. First we consider a direct method where Lagrangian and
Hamiltonian are given by

L = T − U (70)

H = T + U (71)

with kinetic energy T and potential energy U . Replacing p by the canonical
momentum

p = mv→ p+mvg (72)

then leads to

L1 =
1

2m
(p+mvg)

2 − U(r), (73)

H1 =
1

2m
(p+mvg)

2 + U(r). (74)
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In a more general case, however, we can use the relation between Hamiltonian
and Lagrangian known from Hamilton's equations. Then:

H =
∑
j

pj q̇j −L (75)

where qj are the generalized coordinates and pj the generalized momenta. In
our case we only have one generalized momentum (72) � in vector form � which
is obtained by the minimal prescription. Since q is the space position vector r,
its time derivative is the velocity v. Evaluating (75) has to give the Hamiltonian
(74). To achieve this result, the Lagrangian has to be de�ned as

L2 =
1

2m
(p+mvg)

2 − (p+mvg)vg − U(r) (76)

so that we obtain again:

H2 = H1 =
1

2m
(p+mvg)

2 + U(r). (77)

For an example we will use plane polar coordinates (r, θ) in which the linear
velocity is given by

v =

[
ṙ

rθ̇

]
. (78)

For the extra velocity derived from the gravitomagnetic �eld we use two variants.
First we use

vg1 =

[
ṙg
rg θ̇

]
(79)

where the angular coordinate is the same as for the orbit, i.e. the particle m and
velocity vg rotate in the same frame. In the second case we use a completely
independent vg with both coordinates independent from the orbital motion:

vg2 =

[
ṙg
rg θ̇g

]
. (80)

The Lagrangians of all four combinations L1,2,vg1,2 are listed in Table 1. For
L1, mixed terms in r · rg appear. This leads to corresponding combinations in
the constants of motion (angular momentum) shown in Table 2. These have
been calculated by the Lagrangian method, Eq. (63). A similar result appears
in the third line of Table 2. However in the fourth line the angular momentum
of a particle without precession appears. This astonishing result means that the
angular motion is not impacted by the precessional velocity vg2. The reason is

that in the Lagrangian the term θ̇2 appears without a coupling factor to rg so
this result is plausible. The Hamiltonians (Table 3) are equal for L1 and L2 as
expected. They only di�er in the appearance of θ̇g by the di�erent de�nitions
of vg1 and vg2.
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L vg L

L1 vg1
m
2

((
r θ̇ + rg θ̇

)2
+ (ṙg + ṙ)

2

)
− U(r)

vg2
m
2

((
r θ̇ + rg θ̇g

)2
+ (ṙg + ṙ)

2

)
− U(r)

L2 vg1
m
2

(
ṙ2 +

(
r2 − r2g

)
θ̇2 − ṙ2g

)
− U(r)

vg2
m
2

(
ṙ2 + r2θ̇2 − ṙ2g − r2g θ̇2g

)
− U(r)

Table 1: Lagrangians for di�erent vg models.

L vg L

L1 vg1 m(r + rg)
2 θ̇

vg2 mr (r θ̇ + rg θ̇g)

L2 vg1 m(r + rg)(r − rg) θ̇
vg2 mr2 θ̇

Table 2: Constants of motion L for di�erent Lagrangians and vg models.

L vg H

L1 vg1
m
2

(
ṙ2 + r2θ̇2 + ṙ2g + r2g θ̇

2
)
+ U(r)

vg2
m
2

(
ṙ2 + r2θ̇2 + ṙ2g + r2g θ̇

2
g

)
+ U(r)

L2 vg1
m
2

(
ṙ2 + r2θ̇2 + ṙ2g + r2g θ̇

2
)
+ U(r)

vg2
m
2

(
ṙ2 + r2θ̇2 + ṙ2g + r2g θ̇

2
g

)
+ U(r)

Table 3: Hamiltonians H for di�erent Lagrangians and vg models.
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Figure 1: Angular dependence of x factor.

Figure 2: Elliptic orbitals for a = 0 and a = 0.05 (with precession).
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