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ABSTRACT 

The field equations of fluid electrodynamics, a new subject area, are derived 

from Cartan geometry. The Reynolds number is incorporated into the field equations, 

allowing the computation of transition to turbulence. In fluid electrodynamics, spacetime is 

characterized by a mass I current density and a charge I current density. This means that the 

"missing mass" of the obsolete physics can be accounted for without dark matter. Electric 

power from spacetime is a direct consequence of fluid electrodynamics. It is shown that the 

Stokes and convective derivatives of fluid dynamics and electrodynamics are examples of the 

Cartan covariant derivative. The spin connection for the convective derivative is the Jacobian, 

and is a foundational concept both of fluid dynamics and fluid electrodynamics. Numerical 

solutions of key equations illustrate the fluid flows of spacetime (or "aether" or "vacuum"). 
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1. INTRODUCTION 

In recent papers of this series { 1-12} the ECE2 unified field theory, initiated in 

UFT313, has been applied to precession in astronomy and to fluid dynamics, giving many 

original insights. Kambe (keywords "Fluid Maxwell's equations" on google) has recently 

rearranged the equations of fluid dynamics into a format which is translated in this paper into 

equations ofECE2 electrodynamics. The end result is named "fluid electrodynamics", the 

combination of two very large subject areas made possible by the fact that ECE2 is a unified 

field theory. Similarly, there are equations of"fluid gravitation", and "fluid nuclear theory". 

This paper is a short synopsis of detailed calculations contained in the 

accompanying notes, posted with UFT351 on www.aias.us. Note 351(1) is a detailed 

description of the Kambe field equations of fluid dynamics, which have the same geometrical 

structure as the ECE2 field equations both of electrodynamics and of gravitation. The 

Reynolds number, omitted by Kambe, is reinstated. Notes 351(2) to 351(4) give a list of 

conversion factors which are used to translate the Kambe field equations into fluid 

electrodynamics, and give the main equations. Notes 351(5) to 351(7) show that the Stokes 

and convective derivatives of fluid dynamics are examples ofthe Cartan covariant derivative 

of geometry. It is shown that the spin connection of the convective derivative is the Jacobian. 

Finally, note 351(8) incorporates the vorticity equation with Reynolds number into the field 

equations of Kambe, and derives new equations that govern the transition to turbulence. 

Section 2 derives the main equations of fluid electrodynamics and gives a list of 

conversion factors. It is shown that energy from spacetime is a direct consequence of fluid 

electrodynamics and that spacetime is a richly structured' fluid- the "aether" or "vacuum". 

Section 3 gives numerical solutions that directly illustrate spacetime flow and the 

development of turbulence. 



2. MAIN FIELD EQUATIONS OF FLUID ELECTRODYNAMICS 

The minimal prescription can be used to show that for a single particle: 

" -=- ~ A - -- -
W\-

where vis linear velocity, e and m the charge and mass of the particle, and A the conventional - -
vector potential. In ECE2 !:::_is replaced b~ ~.: ~ Aid field. a continuum~ ( -:l \ 

~ - ?. .... - ) 
where ( is the rC~?)density and (rr.. is the mass density. The basicS. I. Units are 

as follows: 

-

-

The Kambe field equations of fluid dynamics are converted into the equations of fluid 

electrodynamics as follows. 

Kambe's fluid electric field is defined as: 

c 
-f 

--



where the velocity field i~ -:. " ( )<_ ( *)) { ( t) J ~ ( 1:-) / 0 _ ( ~ 
and where the following definition is used of enthalpy per unit mass h in joules per kilogram: 

~ { -=- t )!_ f . - ( ~) 
Here p is pressure, defined with non standard units. In ECE2 unified field theory the electric 

field strength in volts per metre is defined as: + 
[ ~ - q vJ - -

From Eqs. ( ~ ) and ( I ): 

~ ~fo- ~ L ") -
It follows that: 

r~ 
r 
~~ - c~) 

in units of joules per coulomb. 
( 

Kambe' s fluid magnetic field is defined to be the vorticity: 

(tD) \-\r- w - \J J<..-.'-.1 - - --
and it follows that: 

'J.w () -(tl) 'J SLr -• ::.. -- --

and 
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It follows that the charge density ( 

defined as: 

and. the current density J of fluid electrodynamics are -

and contains more information than the Coulomb law of conventional electrodynamics. The 

former reduces to ilie latter~ (If:) ~ E- . _ ( n) 

The inhomogeneous field equation of Kambe is: 

J<J 
<\.o -

- --x f 

' where a 
0 

is the constant speed of sound. It follows that the Ampere Maxwell law of fluid 

electrodynamics is: 

) -at 
in which: 



and: 

in which case: 

Eq. ( \ '\ ) can be written as: 

q I' ~ - _L )t_ -::- M "' -- ~:~I 

where the fluid permeability is defined by 

M ~ ~. -l-:15) 
I . E-o a..b 

Using Eqs. ( \ ~ ), ( \ '-t) and ( \} ) the sound equation of fluid electrodynamics is: 

£_ (f~) \-o_; ~ x( '!_ ~(t~i-)) ~- ~. ~ (t ~) 
;y ~~ -(~ 

and under conditions ( \\ ) and ( J..).) this becomes: ') 

)")_~ tC..~ 'i ~c~""£) --- t ~; .-c),) 
o\1 . 

In conventional electrodynamics the vacuum is defined by: 

-:s - 0 



but in fluid electrodynamics the vacuum is a.richly structured fluid that can create electric and 

magnetic fields in a circuit such as the Osamu Ide circuit of UFT311. 

Therefore to translate the Kambe equations into fluid electrodynamics use: 

~ -=-t lf.._)w - ("l'i) 

R._- (o/ ~)fw- (1~ 
.tlf 2·(f tr":J!- e:,,) - (r (fJ. \ ~ - (!:l\ \: r -==- I \'\-) - /. 
~ ~ j_? _(b)) 

f E-o f 
The units of the quantities used by Kambe are: 

:l - _'l, 
d\ ( - -::.. s - ') \:: ~ -:.. Yh..S 'i\ _, ) 

-s 
--f 

The continuity equation of fluid dynamics is: 

\ 'J .. ~ -0 <!&-- -t - -~ 
:rt 

where ( ,.._ is the mass density and ~ "- the current of mass density defmed by: 

-c~) 

Therefore: 

Kambe transforms Eq. ( ~S ) into: 



The continuity equation of ECE2 eJectrodynamics is: 

~<J.-s - - D 

where f is the charge density and 2_2he current density. It follows that the charge density 

of fluid electrodynamics is: 

( 

and is a property of the velocity field of the fluid being considered. This can be matter or 

spacetime, depending on the context or application being considered. 

The continuity equation in fluid dynamics is the conservation of matter, which can be 

neither created nor destroyed in a conservative, classical system. The other well known basic 

equations of fluid dynamics are conservation offluid linear momentum (the Euler and Navier 

Stokes equations); conservation of fluid energy; and conservation of fluid angular momentum 

(the vorticity equation). The Euler equation given by Kambe is:--\ n __ i> - (\' \\ 

) ':{ -\- ( ~ . 'I) 'i .,_ '\/ .l.. '"< ') 

~ r 
and can be developed into the Navier Stokes equation by adding terms on the right hand side 

and the Stokes derivative is (w) 

Conservation of fluid energy is defined by \<~through conservation of entropy per unit 



mass: 

)5 0 ----- .., dt 
Conservation of fluid angular momentum is expressed by Kambe as the vorticity equation: 

-\- '\] Y- ( \r-l "'-"'!__) _Q__ - ( \..S) 

and this equation is not used in the derivation of the Kambe field equations. Eq. ( 4-S ) 
must be corrected for the Reynolds number R as follows (Note 351(1)): 

I \ __ , C"'1 ""). .._ I 

t 'g_ ')<.. l ~ ""-- '::£) ""' R "~ ~ · 

Without the Reynolds number there can be no turbulence or shearing. In general the Kambe 

equations apply to compressible fluids with viscosity. In incompressible, inviscid fluids: 

-- - - (\ct) 

The Kambe field equations are the result of a rearrangement of the fluid dynamical 

equations describe above. These are all conservation equations fundamental to physics. The 

rearrangement results in field equations the structure of which is given by Cartan geometry. 

The same geometry gives ECE2 electrodynamics and gravitation. The foundational Stokes 

and convective derivatives also originate in Cartan geometry. 

I " :\ 4-C\ 
where the fluid mass density is: ( ~ 

( -;..! l 'f-,i} '"L/'0-



with: 

The covariant derivative of Cartan geometry is: 

-;;_ )'-[ " -r 

~ 
where the vector V is defined in a tangent spacetime at a point P to the base manifold. The 

~ 

spin cmmection is in general C0 )"-\, . Define the four vector: 

~ r -=- ( r) '}_r) ~ ( 5~ 
and consider the indices: 

-(s~) 

Le. : 

where the spin connection vector is: 
0 

- W O\ t -
Q.E.D. 

Similarly the convective derivative is: ' 

~'i- - Ji- " ( ~. 'r) '!- - ( s") -
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The convective derivative is therefore: J 
\)~ -,. )~ -\- ( ,_[""' 'L t "f ~ -t "-z.-yz 
~ ~ \, ))<.. Jt 

The X component for example is: 

~-..{~ .,_}./,_ +"x.& T'-~7~ +\[4J\(x 

~ "1i ot di :n 
and similarly for the Y and Z components. Considering 

in Eq. ( S \ ) it follows that: 

I' - \ -=. d'ix 
\..A.-' t7\ 

-~x 

/"- -::-0 - l bJ.) 

I 
G.> ()~ 

) 

and in general the spin connection of the convective derivative is the Jacobian: 

J"l (A 

d'< ~ 

v--· 

Q.E.D. So all the equations offluid dynamics emanate from the spin connection ofCartan 

geometry, Q. E. D. 

Finally the vorticity equation is incorporated in the Kambe field equations as 

follows. 

Kambe's fluid magnetic field is the vortidty: 

--
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so: 

-·"' ·W 
- 6 

- --
The homogeneous field equation ofKambe is: 

'J 'f-. ~f \- J~f 
- - ~t 

where: 

-
and the vorticity equation used by Kambe is: 

~ \- 'Q ')<_ (~ ')<_ ~)- Q_, 

--sr 
Therefore Kambe's convective derivative is: 

\)'4 -
Qt 

From Eqs. ( bb) and ( 6~ ): 

In the particular case of a Beltrami flow: 

--
where k has the units of inverse metres. So for a Beltrami flow: 

and 



For the general flow Eq. ( lO) must be solved numerically for v: 

~ '0('!_ "'--'!) ~ {~ ·'l)'i..- (10 

Th~;olds ;~ res;s(: ::~)aw~nt~:n ~~~;:is :i(;s) 
..-()\: " / 

- - _L ;:;:r)w -S£ -;...(V!_""'-'i). 
~")(._sf - « - -C~9 

so: 

~ ~ ( ')__Y--~) ~ '!. ('!- ·'!!) _\f:l~ 
- -(~~ 

Now use: 

and ~ • '!:£ -=-- 0 - ( t'6) 

to find that: 

It follows from Eqs. ( \.L) and ( L~) that: 

( --\ ... t '"/ v.' ( - L <::] "AW 
~f -=- \_ ':1_· 'i) ~-=- ~ /"-~ ~ -(~ ~. 

Therefore transition to turbulence is governed in general by: 

"~ ~ ~ -=--R ( (~. 'l)'i -'i- ""'~) 
- - --(~\) 



Here: 

- -

which can eb solved numerically using methods described in Section 3. 
fV 

3. NUMERICAL SOLUTIONS FROM FLOW ALGORITHMS 

Section by Dr. Horst Eckardt 
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3 Numerical solutions from �ow algorithms

The equations (79), (81) and (84) have been solved numerically by the �nite
element program FlexPDE. The 3D volume was chosen as for typical Navier-
Stokes applications: a plenum box with a circular inlet at the bottom and an
o�set circular outlet at the top, see Fig. 1. The boundary conditions were set
to v = 0 at the borders of the box and a directional derivative perpendicular to
the openings area was assumed. This allows for a free �oating solution of the
velocity �eld. As a test, a solution for the Navier-Stokes equation

(v ·∇)v +∇p− η∇2v = 0. (85)

was computed, with η being a viscosity. The pressure term was added because
the equation is otherwise homogeneous which means that there is no source
term, leading to a solution which does not guarantee conservation of mass.
The divergence of the pressure gradient is assumed to be in proportion to the
divergence of the velocity �eld:

∇ ·∇p = P ∇ · v (86)

with a constant P for �penalty pressure�. This represents an additional equation
for determining the pressure. The result for the velocity is graphed in Fig. 2,
showing a straight �ow through the box which is perpendicular to the inlet and
outlet surfaces as requested by boundary conditions.

Next the vorticity equation (79) was solved, again with the pressure term to
guarantee solutions:

∇2w +∇× (∇×w) +∇p = 0. (87)

It is di�cult to de�ne meaningful boundary conditions because this is a pure
�ow equation for the vorticity w. We used the same as for the Navier-Stokes
equations. The result is graphed in Fig. 3. There is a �ow-like structure with a
divergence at the left, the �ow is not symmetric. By de�nition, there should not
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†email: mail@horst-eckardt.de
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be a divergence because of Eq. (78). We assume that the boundary conditions
are not adequate for this type of equation.

The situation is more meaningful for Eq. (81) which we solved as

∇×w +R ((v ·∇)v − v ×w) +∇p = 0. (88)

The solution for R = 1 gives an inclined input and output �ow (Fig. 4). In the
middle hight of the box the �ow is more over the sides, therefore the intensity
of velocity is low in the middle plane shown. The divergence (not shown) is
practically zero in this region. Fig. 5 shows a divergent and convergent �ow in
the XY plane, the �ow goes over the full width of the box. Results for higher
Reynolds numbers show no signi�cant di�erence.

Finally we solved Eq. (84) which holds for a Beltrami �ow:

∇2v −R (v ·∇)v −∇ (∇ · v) +∇p = 0. (89)

Here the �ow is strongly enhanced in the middle region (Fig. 6). In the perpen-
dicular plane a similar e�ect can be seen (Fig. 7). The �eld is not divergence-free
there. For a Beltrami �eld we should have

w × v = kv × v = 0. (90)

The vorticity w corresponding to Fig. 7 has been graphed in Fig. 8. There are
indeed large regions where both w and v are parallel or antiparallel. The factor
k seems to be location dependent, we did not constrain the Beltrami property
by further means. Therefore the result is satisfactory. For larger R values the
results remain similar again.

Figure 1: Geometry of FEM calculations.
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Figure 2: Velocity solution for Naview-Stokes Equation (85).

Figure 3: Vorticity solution for Equation (87).
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Figure 4: Velocity solution of Eq. (88) for R = 1, plane Y = 0.

Figure 5: Velocity solution of Eq. (88) for R = 1, plane Z = 0.
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Figure 6: Beltrami solution of Eq. (89) for R = 1, plane Y = 0.

Figure 7: Beltrami solution of Eq. (89) for R = 1, plane Z = 0.
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Figure 8: Vorticity of solution for Eq. (89) for R = 1, plane Z = 0.
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