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ABSTRACT 

The Kambe equations of fluid dynamics used in immediately preceding papers are 

generalized to include viscous force and other effects present in the most general format of 

the Navier Stokes and vorticity equations. The resulting structure is that ofECE2 relativity, 

fluid dynamics in general is shown to have the same structure as electrodynamics and 

gravitation in a space with finite torsion and curvature. It is shown that the whole of fluid 

dynamics can be reduced to one wave equation. 

Keywords: ECE2 relativity, fluid dynamics, generalized Kambe field equations, the wave 

equation of fluid electrodynamics. 
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1. INTRODUCTION 

In immediately preceding papers of this series { 1 - 12} the subject of fluid 

electrodynamics has been developed from the Kambe equations of fluid dynamics (google 

"Kambe fluid Maxwell Equations"). The Kambe equations have the same structure as ECE2 

electrodynamics and gravitation, theories which are developed in a space with finite torsion 

and curvature. In this paper the Kambe equations are developed to include the viscous force 

and other terms which appear in the most general Navier Stokes and vorticity equations, well 

known and highly developed equations of fluid dynamics. It is shown in Section 2 that the 

general Navier Stokes equation reduces to field equations with the structure of ECE2 

relativity. These field equations can be expressed as one wave equation. So the entire subject 

of fluid dynamics reduces to one wave equation. In Section 3 sample computations and 

animations of these new field and wave equations are discussed. 

This paper is a short synopsis of detailed calculations found in the notes 

accompanying UFT353 on www.aias.us .. Note 353(1) is a summary description ofthe most 

general Navier Stokes and vorticity equations, with an explanation of the various terms. 

Notes 353(2) and 353(3) derive a useful simplification of the vorticity equation. This is 

suitable for computation as in UFT349, UFT352 and UFT352. Section 2 is based on Notes 

353(4) to 353(6) and derives field equations of fluid dynamics which are ECE2 covariant. It 

is shown that these field equations can be combined into one second order wave equation 

which is suitable for animation. 

2. FIELD AND WAVE EQUATIONS 

Consider the general N a vier Stokes equation { 1 - 12}: 



where v is the velocity field of a fluid, h is enthalpy per unit mass, f is the viscous force, and -
is a potential such as the gravitational potential. The gradient of h is defined by: 
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where f is the mass density of the fluid, and where Pis the pressure in nonS. I. Units as is 

customary in fluid dynamics. Kambe used the equation: 

- -0 
and so omitted two terms. The correct definition ofKambe's "fluid electric field" is 
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If the viscous force is defined most generally ("Vector Analysis Problem Solver") as: 
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it follows that: 
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-With this definition of the scalar potential ~ , the Kambe field equations follow: -
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It has been shown that the most general form of fluid dynamics can be expressed as ECE2 

covariant field equations, the above four equations, Q. E. D. Here C\.0 is the constant speed 

of sound as used by Kambe. More generally, a 
0 

is not constant. 

Note carefully that the above derivation ofthe four field equations does not use 

the most general vorticity equation of fluid dynamics, which is: 

~~--\- ~ -,<.l~x:£) + ~ 'S[_( )<. ~ f ~ 'l ').':!:!- . 
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Kambe omitted the second and third terms on the right hand side ofEq. ( \.:) ), the 

baroclinic and Reynolds number terms. 

In the field equations ( q ) to ( \ ~) the fluid charge is defined by: 

oy f -=- ~ • ~ f ~ ~ . (( '£. 'r) ~) - (t\.) 

and the fluid current by: 

As in note 353(5) it follows that: C) 
q ') 'i -\- ~ ( 'i_ . '!) - - "\{ f- - ( l) 

~t· . 
and: -
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where the d' Alembertian is defined by: 

\ n . -\J . - -
4o 

"). 

As shown in detail in Note 353(6), this is an exact consequence ofthe definitions ( \4-) 

and ( \S ). With the definitions: 
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and ( \ C\ ), the continuity equation can be written as: 

D • 

Now define the velocity four vector: 

and assume: 

This is the Lorenz gauge assumption of fluid electrodynamics. With the assumption C)4- ), 

Eqs. ( \ b ) and ( l\) reduce to: 

D~ ='\ff -(J->) 
and: 
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which can be combined into the single wave equation: 

Q.E.D. 

The relevant S. I. Units are as follows: 
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From Eqs. ( \ ~ ), ( l S ) and ( ~ ): 
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By commutativity of differential operators: 
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The Lorenz gauge ( -:l, ~) is a possible solution of Eq. ( 2> 0 ), Q. E. D. So the analysis is 

self consistent. 

It has been shown that the entire subject of fluid dynamics can be reduced to one 

soluble wave equation ( ~ l ) which has the structure of the ECE wave equation: 

-=- 0 

provided that the scalar curvature R is defined by: 

\ '} )~ . - ( b'.l) --
~b 
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3 Graphics and animation with sample results

In this paper the wave equations of �uid electrodynamics have been developed.
In case of an external current density J the wave equation (26) reads

1

a20

∂2v

∂t2
−∇2v =

1

a20
J. (33)

Assuming a harmonic time dependence, we de�ne

v(r, t) = vS(r) exp(iωt) (34)

and

J(r, t) = JS(r) exp(iωt) (35)

with a time frequency ω and only space-dependent velocities vS and current
densities JS . Then Eq. (33) reads

−ω
2

a20
vS −∇2vS =

1

a20
JS (36)

which is an eigenvalue equation. For vanishing current density it can be written
in the standard form

∇2vS + λvS = 0 (37)

with positive eigenvalues

λ :=
ω2

a20
(38)

which correspond to acoustic eigen frequencies for example. This equation can
be solved numerically by the �nite element method. In our example we re-
adopt the 3D �ow box of UFT papers 351 and 352 with corresponding boundary
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conditions, irrespective of further utility considerations. The �rst six eigenvalues
(in arbitrary units) are listed in Table 1. There is a degeneracy between �rst
and second eigenvalue and between �fth and sixth eigenvalue. This is due to
internal symmetry of the �ow box. The values are lying near to each other. The
modulus of the �rst and sixth velocity eigen state has been graphed in Figs. 1-4
for two planes of symmetry (Z = 0 and Y = 0). The sixth eigen state has a
node in the middle plane of symmetry. This symmetry is also present in the
vorticity vectors, see Figs. 5-6. The divergence of velocity has been graphed in
Figs. 7 and 8. The divergence is not restricted to the boundary regions and is
more pronounced for the higher eigen state.

For a correct treatment of the wave equation within �uid electrodynamics,
we have to include the current density (15):

JF = a20∇× (∇× v)− ∂

∂t
((v ·∇)v) . (39)

The second term is not linear in v so the time-harmonic approach is only possible
for the �rst term. From (36)this gives the more general eigenvalue equation

∇2vS +∇× (∇× vS) + λvS = 0. (40)

As a result, the eigenvalues are very small, compared to Eq. (37), and there are
a lot more turbulences. The numerical calculation takes half an hour on a stan-
dard PC but converges. The numerical precision, however, is not satisfactory,
therefore these result can only show a tendency. The �rst six eigenvalues are
listed in Table 2. There is no degeneration any more. In Figs. 9-14 the vorticity
in the plane Y = 0 has been graphed, this can be compared with Figs. 5 and
6. Obviously Eq. (40) incurs a lot more of turbulence structures. One can see
that eigen state n possesses n+ 1 vortices. This seems to be a particularity of
Eq. (40).

A time-dependent calculation has been tried by assuming that the second-
order time derivative can be neglected against the �rst-order time derivative in
the current density:

∇2vS = −∇× (∇× v) +
∂

∂t
((v ·∇)v) . (41)

Adding a pressure term ∇p as described in previous papers gives a non-singular
equation but no time solution. Obviously the nonlinearity prevents a solution �
at least for this special problem of boundary values considered.

Coming back to the solution of Eq. (40), this seems to be the �rst time that
an ECE2 wave equation of type

(�+R)v = 0 (42)

(see Eq. (31)) has been solved for a curvature R which in turn depends on the
variable v. This is certainly a step beyond contemporary standard equations of
physics, e.g. the Dirac equation, where always a constant curvature has been
assumed. The numerical problems, however, are enormous and a lot of work
will be required to develop this �eld of ECE2 physics.
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No. Eigenvalue

1 12.1031274
2 12.1031274
3 12.1919561
4 13.2402655
5 13.3685992
6 13.3685992

Table 1: Eigenvalues of Eq. (37).

No. Eigenvalue

1 2.56351677e-3
2 2.68244759e-3
3 4.08141046e-3
4 6.27378404e-3
5 7.79542935e-3
6 8.34876355e-3

Table 2: Eigenvalues of Eq. (40).

Figure 1: Velocity modulus of Eq. (37) on Z=0, eigen state 1.
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Figure 2: Velocity modulus of Eq. (37) on Z=0, eigen state 6.

Figure 3: Velocity modulus of Eq. (37) on Y=0, eigen state 1.
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Figure 4: Velocity modulus of Eq. (37) on Y=0, eigen state 6.

Figure 5: Vorticity of Eq. (37) on Y=0, eigen state 1.
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Figure 6: Vorticity of Eq. (37) on Y=0, eigen state 6.

Figure 7: Divergence of velocity of Eq. (37) on Y=0, eigen state 1.
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Figure 8: Divergence of velocity of Eq. (37) on Y=0, eigen state 6.

Figure 9: Vorticity of Eq. (40) on Y=0, eigen state 1.
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Figure 10: Vorticity of Eq. (40) on Y=0, eigen state 2.

Figure 11: Vorticity of Eq. (40) on Y=0, eigen state 3.
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Figure 12: Vorticity of Eq. (40) on Y=0, eigen state 4.

Figure 13: Vorticity of Eq. (40) on Y=0, eigen state 5.
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Figure 14: Vorticity of Eq. (40) on Y=0, eigen state 6.
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