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ABSTRACT 

Using the theory of fluid gravitation it is shown that all observable orbits can be 

expressed as a generally covariant inverse square law of universal gravitation. The law can 

be expressed in several 'Vays, notably that the acceleration due to gravity between a mass m 

orbiting a mass M is the derivative of the orbital velocity of m in a moving frame of 

reference. This is the Lagrange derivative, and in fluid gravitation becomes the convective 

derivative. 
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1. INTRODUCTION 

In immediately preceding papers of this series { 1-12} the subject of fluid 

gravitation has been developed by unifying the ECE2 field equations of gravitation and fluid 

dynamics. Similarly, in earlier papers, the subject of fluid electrodynamics was developed by 

unifying the ECE2 field equation of electrodynamics and fluid dynamics. In the preceding 

paper, fluid dynamics led to a new inverse square law of attraction between a mass m orbiting 

a mass M. In Section 2 this law is developed in various ways and applied to three examples of 

planar orbits: the conic section, the precessing ellipse and the hyperbolic spiral. The law can 

also be applied in three dimensions as shown in the preceding paper. 

This paper is a brief synopsis of detailed calculations given in the notes 

accompanying UFT360 on wv.w.aias.us. Note 360(1) gives a detailed self consistency check 

for the elliptical planar orbit. Notes 360(2) gives the generally covariant inverse square law of 

all orbits. Note 360(3) derives the new force law for a whirlpool galaxy. Note 360(4) gives 

the new force law for a precessing elliptical orbit, and Note 360(5) gives new general 

expressions for acceleration due to gravity. 

Section 3 is a numerical and graphical analysis of the new law. 

2. DEVELOPMENT OF THE NEW LAW 

The law can be expressed as follows: 

~ (~·"}_))!_ 
in two or three dimensions. Here g is the acceleration due to gravity between a mass m -
orbiting a mass M. The orbital velocity of the mass m is v. Therefore g is the derivative ofv - -
in a moving frame of reference - the Lagrange derivative. In fluid gravitation it is referred to 



as the convective derivative using the traditional terminology. For planar orbits, the inverse 

square law is: 
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From Eq. ( 1_ ), the orbital velocity is: 
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The law ( 1_ ) is generally covariant because it is derived from a generally covariant unified 

field theory. For a circular orbit: 
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and the law ( 1,_ ) reduces to the ftr ,m of the Hooke Newton inverse square law of universal 

gravitation. However, notetarefully that for all orbits, including the circular orbit, the new law 

is generally covariant. The Hooke Newton law is empiricaL non relativistic and galilean 

covariant. 

In plane polar coordinates ( r, ~ ): 

For the elliptical orbit it is :l..;o: thm &- ( ~ 
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where a is the semi major axis, so for the elliptical orbit: 
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and the acceleration due to gravity in fluid gravitation is: 

being defined by a generally covariant inverse square law. In ECE fluid dynamics (an 

where '::f._ flays the role of the vector potential and where 

is the gravitational scalar potential. Here h is the enthalpy per unit mass m. 

Therefore Eq. (7) shows that the acceleration due to gravity is the Lagrange 

derivative of the orbital velocity and can be expressed as the following law of general 

relativity, the generally covariant law:: 

-
where ..Q. ( is the radial unit vector. 

In the galilean covariant Newtonian theory: 

and 



where H is the hamiltonian. 

The new law applies to all orbits, in the sense that all orbits can be described by the 

generally covariant inverse square law ( ~ ). It is well known that the Newtonian law 

applies only to conic sections. The hyperbolic orbit of a whirlpool galaxy is considered in 

Note 360(3) and the precessing elliptical orbit in Note 360(4). 

and 

and this is the general definition ofthe moving frame of reference. Astronomical observation 

of any planar orbit defines: 
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by establishing the functional dependence of r on 6 

1) Whirlpool Galaxy 

In this case: 
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where r 

0 
is a constant. It follows that: 
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where Lis the angular momentum of the system defined by m orbiting M. It is a constant of 

motion worked out from the relevant Euler Lagrange equation (see Note 360( 4)). It follows as 

in Note 360(3) that: 

and 
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define the relevant moving frame ofEq. ( 1_ ) for the whirlpool galaxy and hyperbolic 

spiral orbit of m about. These coordinates X and Y are graphed in Section 3. 

2) Precessing Elliptical Orbit in a Plane 

It is observed astronomically to high precision that all solar system objects of mass 

m orbit the sun of mass M in a planar orbit defined by: 
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ln which J_ is the half right latitude. This experimental or empirical result is also true in 

binary objects outside the solar system, in which xis very close to unity. It follows as in Note 

360(4) that: 
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and 
• 

So X and Y can be graphed using Eqs. ( \ \.r ), ( l5 ), ( J. lr ) and ( lS ). This 

procedure is carried out in Section 3 and defines the moving frame of Eq. ( 1._ ), which is 

the generally covariant inverse square law ofthe precessing elliptical orbit observed 

astronomically. 

As shown in Note 350(5): 
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for the precessing elliptical orbit, so its generally covariant acceleration due to gravity can be 

expressed as: 
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The same equation applies to the generally covariant acceleration due to gravity between a 

star of mass m orbiting a central mass M in a whirlpool galaxy. These results are also graphed 

in Section 3. The precessing ellipse reduces to the static ellipse when: 

Therefore: 

f -
is the generally covariant inverse square law for any planar orbit. 

3. NUMERICAL RESULTS AND GRAPHICS. 
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3 Numerical results and graphics

We give some examples for the cartesian coordinates and acceleration of several
types of planar orbits. The general formulae for the X and Y coordinates are
given in Eqs. (14, 15). For a hyperbolic spiral de�ned by Eqs. (18-21) the
functions X(r) andY (r) are plotted in Fig. 1. A logarithmic r scale has been
used to make the oscillations visible. Their exponential growth can be observed.

The coordinates of a precessing ellipse according to x theory are graphed in
Fig. 2 for ε = 0.5. Two values of x have been used: x = 1 (normal ellipse)
and x = 0.9 (strongly precessing ellipse). As can be seen, the X and Y values
start at the same point at r = rmin but x = 0.9 overshoots the normal ellipse at
r = rmax as expected. There is a cross-over point in the Y coordinates. In case
of parabolic and hyperbolic orbits (ε ≥ 1) the same formulae lead to unbound
states, see Fig. 3, with asymptotes.

The second subject of graphical representation is the acceleration, generally
given by Eq. (11). For a hyperbolic spiral this is

g = − L4

GM m4

(
1

r2
+

1

r02

)2

(30)

which is graphed in Fig. 4, leading to a negative asymptotic behaviour for
r →∞. For the precessing and non-precessing ellipses, we �nd the well known
1/r2 behaviour for x = 1 and a curve of small deviations of higher order for
x > 1 (Fig. 5). In case of other conic sections (Fig. 6) there are di�ering
asymptotes for large r values.
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Figure 1: Orbit coordinates X(r) and Y (r) for a hyperbolic spiral.

Figure 2: Orbit coordinates X(r) and Y (r) for precessing and non-precessing
ellipses.
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Figure 3: Orbit coordinates X(r) and Y (r) for conic sections.

Figure 4: Acceleration for a hyperbolic spiral.
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Figure 5: Acceleration for precessing and non-precessing ellipses.

Figure 6: Acceleration for conic sections.
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