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ABSTRACT 

Classical dynamics is developed into ECE dynamics, in which the background 

spacetime is a fluid governed by the equations of fluid dynamics. This development is a 

logical consequence of the unification of gravitation and fluid dynamics by ECE theory. To 

exemplify ECE2 dynamics the acceleration is evaluated with the Lagrange derivative, which 

is shown to be an example of the covariant derivative of Cartan 
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1. INTRODUCTION 

In recent papers ofthis series, gravitation has been unified with fluid dynamics 

{ 1 -12} so that spacetime or the vacuum or aether is considered to be a fluid. In this paper, 

ECE2 dynamics are developed with the Lagrange derivative of fluid dynamics. ECE2 

dynamics is a generally covariant theory and is therefore a theory of general relativity. It 

contains more information than classical dynamics, to which it reduces in well defined limits. 

ECE2 dynamics does not use any of the concepts proposed by Einstein, and is an example of 

van der Merwe's post Einsteinian paradigm shift. The generally covariant ECE2 dynamics is 

based on Cartan geometry, and it is shown in Section 2 that the Lagrange (or material, or 

convective) derivative is an example ofthe Cartan derivative, which is defined through a spin 

connection matrix. The presence of the latter indicates that the theory is generally covariant, 

and is part of a unified field theory. The Hooke I Newton I Leibnitz orbital theory of the 

seventeenth century is Galilean covariant and does not contain a spin connection. Obviously 

the seventeenth century theory was not part of a unified field theory. 

This paper is a condensed synopsis of the main results contained in extensive 

calculations in the notes accompanying UFT361 on www.aias.us and \vww.upitec.org. These 

notes give full details, most of which are missing from the usual textbooks and which are 

difficult to find. In Note 361(1) the acceleration is defined as the Lagrange derivative of 

velocity, which becomes a velocity field as usually defined in fluid dynamics. The spin 

connection is defined in Cartesian coordinates. In notes 361(2) and 361(3) the Lagrange 

derivative is developed in cylindrical polar coordinates from first principles. The 

development in these notes is given in all detail and results in the discovery of new 

fundamental accelerations not inferred by Corio lis in 183 5. The Corio lis accelerations are 

recovered in well defined limits. This shows that the use of the Lagrange derivative 



generalizes classical dynamics. The result is named "ECE2 dynamics". In notes 361 ( 4) and 

361 (5) the results of ECE2 dynamics are expressed in terms of a spin connection matrix in 

cylindrical coordinates and plane polar coordinates. The overall conclusion is that the usual 

cylindrical or plane polar coordinate system is a limiting case of a more general coordinate 

system. As in any theory of general relativity, the dynamics become those of the coordinate 

system itself. This inference applies both to material dynamics, such as those of particles, and 

also to the spacetime, or vacuum or aether, because the spacetime is the frame of reference 

itself. The presence of a covariant derivative means that the frame of reference is a dynamic 

quantity. In the Hooke I Newton Leibnitz dynamics, the Cartesian frame of reference does not 

move, and the vacuum is a structureless nothingness, an early anthropomorphic concept. 

2. DETAILS OF DYNAMICS 

In cylindrical coordinates the velocity field of ECE2 dynan1ics is the following 

function: 

In classical dynamics the velocity is a function of time: 
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in cylindrical polar coordinates. The second ~atrix has the antisymmetric structure of a 

rotation generator and is the matrix form of the angular velocity of the rotating frame of the 

coordinate system. 

The Lagrange derivative ofECE2 dynamics, exemplified in Eq. (I ), is the 

in which the spin connection matrix is: 
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The velocity vector in plane polar coordinates is: 
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where the angular velocity of the rotating frame of the plane polar system of coordinates is: 
• 

w- - ( 1\r) -- e. 
The plane polar coordinates system is therefore a moving frame of reference of 

general relativity, and its spin connection components are: 
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The Cartan I Lagrange derivative of velocity can be expressed as: 
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in terms of the unit vectors ofthe plane polar system. Eq. ( \ ~ ) is the following covariant 

derivative of Cartan geometry: 
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This is a new and original definition of any acceleration. It follows that: 
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On the right hand side ofEq. ( 'J.l) appear the Newtonian acceleration: 
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the centrifugal acceleration: 

and the Coriolis accelerations: 
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as is well known (Coriolis, 1835). c 
The Carlan I Lagrange derivative leads to the discovery of new accelerations: -
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not inferred by Coriolis and which are unknown in classical dynamics. They are a 

fundamental result of ECE unified field theory and they are the result of the velocity field: 
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which generalizes 

of classical dynamics. 

In the usual development ofthe plane polar coordinate system: 
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because r and e are the independent variables of the coordinate system ( r, e ). 
Similarly in the Cartesian system: - E_ ~o. -C0 
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However, ifr and e become functions oftime, and ifv depends on rand e as in Eq. -
( ~). ) , the plane polar coordinate system is generalized and becomes a moving frame, 

because the time derivative of v must be worked out with the chain rule of differentiation as -
in Note 361(3). The velocity field ( ) a_) results in the new accelerations ( ~ \ ). 

Considering the components of the new acceleration, there are results such as: 
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which augments the centrifugal acceleration. In Eq. ( 
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so ~ ( has no functional dependence on (" or e . In consequence. in the usual 

development: 

and 

-
In this case: 

-

Q.E.D. 

However, Eq. ( lt3 ) is a very limited result that depends on: 

3. SAMPLE GRAPHICS 
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3 Sample graphics

First we do some calculations on the accelerations in ECE2 �uid dynamics as
described in section 2. The accelerations in plane polar coordinates are

a = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ, (45)

a1 =

(
ṙ
∂ṙ

∂r
+ θ̇

∂ṙ

∂θ

)
er +

(
rṙ
∂θ̇

∂r
+ θ̇2

∂r

∂θ

)
eθ. (46)

Now use

∂θ̇

∂θ
=
∂θ̇

∂t

dt

dθ
=
θ̈

θ̇
, (47)

and similarly

∂θ̇

∂r
=
θ̈

ṙ
,

∂ṙ

∂θ
=
r̈

θ̇
, (48)

∂ṙ

∂r
=
r̈

ṙ
,

∂r

∂θ
=
ṙ

θ̇
. (49)

Inserting this into (46) gives

a1 = 2 r̈ er +
(
rθ̈ + ṙθ̇

)
eθ. (50)

In total, the acceleration now is

atot = a+ a1 = (3r̈ − rθ̇2)er + (2rθ̈ + 3ṙθ̇)eθ. (51)

This is a massive modi�cation of (45). The latter is valid for mass point dy-
namics only with v = v(t).
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For evaluation of examples, the time dependence shall be eliminated. From
conservation of angular momentum L0 in Z direction follows

θ̇ =
L0

mr2
(52)

and

θ̈ =
dθ̇

dt
=
dr

dt

∂

∂r

(
L0

mr2

)
= −2 ṙ

L0

mr3
. (53)

Similarly:

ṙ =
∂r

∂θ
θ̇, (54)

r̈ =
d

dt

(
∂r

∂θ
θ̇

)
=

d

dt

(
∂r

∂θ

)
θ̇ +

∂r

∂θ
θ̈ =

dθ

dt

∂

∂θ

(
∂r

∂θ

)
θ̇ +

∂r

∂θ
θ̈ (55)

=
∂2r

∂θ2
θ̇2 +

∂r

∂θ
θ̈.

Thus all quantities depend on θ and r only. For cylindrical coordinates it follows
correspondingly:

Ż =
∂Z

∂θ
θ̇, (56)

Z̈ =
∂2Z

∂θ2
θ̇2 +

∂Z

∂θ
θ̈, (57)

∂Ż

∂θ
=
∂2Z

∂θ2
θ̇. (58)

All time derivatives have been brought into a form depending on θ and θ̇ which
is given by (52).

As a non-trivial example we consider a three-dimensional vortex �eld called
Torkado [1], see Fig. 1. This could also be a description for the dynamics of
the plasma model of galaxies. We concentrate on a streamline in the middle of
the structure which may be described by the analytical approach in cylindrical
coordinates (r, θ, Z):

r(θ) = 0.05 + cos

(
θ

10

)2

, (59)

Z(θ) = 2 sin

(
θ

5

)
, (60)

see Fig. 2. For a plot in cartesian coordinates, the plane polar part is to be
transformed by

X = r cos(θ), (61)

Y = r sin(θ). (62)

In order to make the analysis not too complicated, we restrict it to the plane
polar parts of the acceleration as given in Eqs. (45, 46, 51). The orbital quan-
tities r(θ), Z(θ), ∂r/∂θ and ∂Z/∂θ are graphed in Fig. 3 in dependence of θ.
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These are oscillatory as to be expected from (59, 60). The time derivatives of
r, θ and Z, calculated with aid of (53-58), are essential where r is small due to
conservation of angular momentum (Fig. 4). The radial acceleration parts ar,
a1r and its sum ar + a1r are presented in Fig. 5, showing that the signs of ar
and a1r are di�erent, leading to zero crossings in the sum of both. The angular
part of a1 re�ects the well known fact that for a plane polar system aθ = 0, i.e.
there is no angular force component. This does not hold for a1θ.

The correct handling requires use of Eq. (33) of UFT paper 356 for describing
the acceleration in 3D cylindrical coordinates. The result from computer algebra
is:

Dv

Dt
=
∂v

∂t
+ (v ·∇)v =

 r̈ − rθ̇2 + ∂ṙ
∂θ θ̇

rθ̈ + (r ∂θ̇∂θ +
∂r
∂θ θ̇)θ̇ + 3ṙθ̇

Z̈ + ∂Ż
∂θ θ̇

 . (63)

This can be re-expressed by

Dv

Dt
=

 r̈ − rθ̇2 + r̈
θ̇
θ̇

rθ̈ + (r θ̈
θ̇
+ ∂r

∂θ θ̇)θ̇ + 3ṙθ̇
∂2Z
∂θ2 θ̇

2 + ∂Z
∂θ θ̈ +

∂2Z
∂θ2 θ̈

 (64)

=

 2r̈ − rθ̇2

2rθ̈ + 4ṙθ̇
∂2Z
∂θ2 θ̇

2 + (∂Z∂θ + ∂2Z
∂θ2 )θ̈


where the derivatives of Z can be calculated from (60). This result is di�erent
from the plane polar case as expected. The three components are graphed in
Fig. 7. There is qualitative similarity to Figs. 5 for the radial component, it
re�ects both extremal points. The θ component surprisingly vanishes again as
for the plane polar system. Obviously there is no coupling to the Z component
that would prevent this. The Z component is antisymmetric to the two radial
peaks, indicating the lower and upper turning points of the orbit.
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Figure 1: Torkado vortex after [1].

Figure 2: Structure of Torkado 3D orbit.
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Figure 3: Angular dependence of r, Z, ∂r/∂θ, ∂r/∂Z.

Figure 4: Scaled angular dependence of dr/dt, dθ/dt, dZ/dt.
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Figure 5: Angular dependence of radial accelerations.

Figure 6: Angular dependence of angular accelerations.
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Figure 7: Angular dependence of acceleration components for full cylindrical
coordinates.
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