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ABSTRACT

By considering the convective or Lagrange derivative of the general vector field,
orbital theory in classical dynamics is extended to orbital theory in fluid dynamics within the
context of ECE2 generally covariant unified field theory. The Lagrange derivative is
developed as a Cartan covariant derivative. It is shown that if sapcetime (or the ather or
vacuum) is considered to be a fluid, classical orbital theory is changed by the presence of

additional spin connection components.
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1. INTRODUCTION
In recent papers of this series {1-12} the subject areas of gravitation, fluid
dynamics, classical dynamics and gravitation have been shown to be examples of ECE2

unified field theory. Earlier papers of this series (www.aias.us and www. upitec.org) have

shown that the unified field theory also encompasses nuclear physics. In this paper it is shown
that orbital theory in classical dynamics is affected if the orbit is considered to take place in a
spacetime or vacuum that is considered to have a fluid structure. The relevant derivatives of
orbital theory are shown to be generally covariant Cartan derivatives of differential geometry.
The Cartan derivative generalizes the material, convective or Lagrange derivative of ﬂuid’
mechanics. If the background spacetime or ether or vacuum in which the orbit takes place is a
fluid, then the orbit becomes different from the familiar result of classical dynamics. These
differences may well be observable in such effects as precession of the perihelion.

This paper is meant to be a concise synopsis of detailed calculations in the
accompanying background notes to UFT362 on www.aias.us. The reader is referred to these
notes for more detail. Note 362(1) is a preliminary development of the convective derivative
in a plane polar coordinates system. The final form of this note is note 362(5), on which
Section 2 of this paper is based. In Note 362(2) the concept of an elliptical polar system of
coordinates is introduced in order to eliminate a self inconsistency of the plane p‘olar system.
This elliptical polar system is developed further in UFT363 in preparation. Note 362(3) is a
clarification of Note 362(1). In note 362(4) it is shown that the well known expressions for
velocity and acceleration in the plane polar system are examples of the Cartan covariant
derivative in which the spin connection is the ro;[ation generator of the plane polar frame.

In Section 2 the convective derivative of the ger;eral vector ﬁeld.y_is calculated, and

used to show that the familiar orbital theory of classical dynamics is affected if the orbit is



assumed to take place in a vacuum that is considered to be a fluid, and not in a vacuum

considered to be a “nothingness” as in classical dynamics.

In Section 3, the effect of the background aether on the Coriolis velocity is evaluated

and graphed numerically..

2. EFFECT OF A FLUID SPACETIME ON ORBITAL THEORY

Consider the convective or Lagrange derivative of the general vector field V:
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in plane polar coordinates used for orbital theory. It is seen that V is a function of t, r(t) and
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where:

6 (*) Here v is the velocity field:
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In plane polar coordinates Eq. ( A_ ) becomes:
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where the Leibnitz Theorem has been used. In plane polar coordinates it is well known that:
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Here 9 is the angular velocity of the rotating plane polar frame. In component format Eq.

é ) is:
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where:

where the complete vector V is:
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Here g_ ¢ and -g_ 8 are the unit vectors of the plane polar system. In classical dynamics

the vector field V reduces to a time dependent vector of classical dynamics:
] -\ (}{3 — ( \6
P et —

and has no functional dependence on r(t) and 6 (k> . This is the key difference between

classical dynamics and fluid dynamics In classical dynamics therefore:
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and this result is assumed implicitly in orbital theory and cosmology.
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The assumption ( \o ) simplifies Eq. ( L. ) to:
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which is the Cartan derivative of ECE2 theory {1 - 12} with spin connection:
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This is the rotation generator of the axes of the plane polar system. In Note 362(4) it is shown
in all detail that if V (5 represents the time dependent position vector r(t) of the plane polar

system, then the orbital velocity is given by the Cartan derivative:
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In vector notation the orbital velocity is the familiar:
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of the classical dynamics of rotating systems. If V (*’) represents the time dependent
velocity vector v ({-) of the plane polar system then the orbital acceleration is given by the

Cartan derivative:
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In vector notation this is the familiar acceleration in the plane polar system:
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The terms in g_ 6 are the Coriolis accelerations. In previous UFT papers it has been

shown that the Coriolis accelerations disappear for any planar orbit in classical dynamics:
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so the acceleration of a planar orbit in classical dynamics is:
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leading to the well known Leibnitz equation:
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In classical dynamics the background spacetime (or vacuum or aether) is a



“nothingness”. This is an anthropomorphic assumption originating in the seventeenth century.
It is well known in contemporary physics that the vacuum is richly structured. If it is assumed
that the vacuum is governed by fluid dynamics, as in recent papers of the UFT series, then the
spin connection ( \S ) of classical dynamics becomes the following spin connection of
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The Coriolis velocity of an orbit is generahzed to:

(13 e A Sl

and the Coriolis acceleration of an orbit is generahzed to:

fluid dynamics:
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The switch from classical to fluid dynamics means that: B
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For example, the usual orbital velocity components:
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The complete Coriolis velocity is:
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and the square of the orbital velocity is: ‘
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1s changed by the presence of a fluid spacetime, aether or vacuum. In Eq. ( ,?)S ) ais the
semi major axis of an elliptical orbit of an object m around an object M fixed at one focus of

the ellipse. Here G is Newton’s constant. It may well be possible to explain orbital precession

with spin connection components of the aether.

3. NUMERICAL ANALYSIS AND GRAPHICS OF THE AETHER EFFECT

Section by Dr. Horst Eckardt
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