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ABSTRACT 

It is shown that rotational dynamics is governed in general by the Cartan covariant 

derivative whose spin connection is a well define matrix of angular velocities. This matrix 

can be expressed in terms of any set of coordinates, and also in terms of the Euler angles. 

Rotational dynamics is therefore a sub structure of Cartan geometry, and can be extended in 

many different ways using the principles of Cartan geometry and ECE2 theory. Examples are 

given of the application of the theory to various types of gyroscope motion. 
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1. INTRODUCTION 

In recent papers and books of this series { 1 - 12} the theory of the gyroscope has 

been developed in various ways and applied to explain the well known Laithwaite experiment 

in which a gyroscope held at arm's length appears to be weightless. In Section 2 of this paper 

it is shown that rotational dynamics in general is an example of the Cartan covariant 

derivative with well defined spin connection, and so rotational dynamics is a well defined 

limit ofECE2 theory. This result is exemplified by applications to the rotational dynamics of 

the asymmetric top using Euler angles and spherical polar coordinates. The transformation 

from spherical polar coordinates to Euler angles is defined. The use of spherical polar 

coordinates simplifies the development of the dynamics of a gyroscope with one point fixed, 

and allows the relevant torque to be well defined. Having attained this understanding the 

effect of an additional torque can be investigated. Laithwaite used an additional torque to lift 

the gyroscope and this torque can be modelled by computer. A dumb bell model is developed 

of the earth, treated as a gyroscope in orbit around the sun. This theory gives the basics of the 

Milankovitch cycles. Finally the translational kinetic energy is developed in terms of the 

Euler angles and spherical polar coordinates, a theory that can be used for spherical orbits and 

for the description of the nutations and precessions of the earth in orbit. 

In Section 3, a dumb bell model is abalyzed and developed numerically, with 

graphics of the motion. Example graphics are given of solutions to the problems solved in 

Section 2. The key advance is the use of Maxima code to solve the relevant sets of Euler 

Lagrange equations. 

This paper is a synopsis of extensive calculations contained in the notes 

accompanying UFT370 on www.aias.us and W\\tw.upitec.org. Note 370(1) contains some 

remarks on the methods used in UFT369. Note 370(2) is a first theory ofthe gyroscope 



subjected to an external torque. Note 3 70(3) is the basis for part of Section 2 and develops the 

general theory ofrotational dynamics in terms ofCartan geometry. Notes 370(4) and 370(5) 

give the general theory the rotational dynamics of the asymmetric top in terms both of Euler 

angles and spherical polar coordinates. Note 370(6) gives the general relation between the 

angles ofthe spherical polar system and the Euler angles. Note 370(7) develops the theory of 

the gyroscope with one point fixed in terms of the spherical polar coordinates, and defines the 

relevant laboratory frame torque. Having defined the torque in this way , it becomes clear 

how to apply and model the Laithwaite torque by computer. The use of spherical polar 

coordinates is much simpler than the use of Euler angles, so the former method is preferred 

by Ockham's Razor. Note 370(8) is an extension of the dumb bell model developed in 

Section 3, and Note 3 70(9) defines the translational kinetic energy in terms of spherical polar 

coordinates and Euler angles, a definition needed for the understanding of Milankovitch 

cycles. 

2. ROTATIONAL DYNAMICS AS CART AN GEOMETRY 

Rotational motion is developed from first principles in Note 370(3) which should 

be read with this synopsis. These principles are well known, but are given in all detail in 

Note 370(3) for clarity of exposition. They result in the well known theorem for the time 

derivative of any vector F : 

c{f -
\~ 

The left hand side of this equation is the derivative in the laboratory frame (X, Y, Z), and the 

right hand side is the derivative in the rotating frame (1, 2, 3). Here, CV is the angular 

velocity vector defined in frame (1, 2, 3). An example of frame (1, 2, 3) is that of the 



principal moments of inertia of the rotating asymmetric top. In the Cartesian frame, often 

known as the inertial frame, the coordinate axes are not moving, but in frame ( 1, 2, 3) the 

coordinate axes are themselves rotating. Note 370(3) gives all details. Note carefully that 

Newtonian dynamics is defined in the inertial frame. In frame (1, 2, 3), for example of a 

gyroscope, more terms appear such as the centrifugal and Coriolis forces. 

Eq. ( 1.. ) can be written as: 
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where c..>, , (.,.)') and cv3 are components of the angular velocity in frame ( 1, 

2, 3). Eq. ( ~ ) is a special case of the Cartan covariant derivative: 

where 

it follows that: 
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The spin connection matrix of Cartan for rotational dynamics is therefore: 
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An example ofEq. ( i ) is the torque defined by: 
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where Lis the angular momentum. Using: 
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Eq. ( <l ) becomes Euler's equations in frame (1, 2, 3) ( ~ 
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The Cartan spin connection for the Euler equations is therefore given by Eq. ( f ): -
0 

The torque vector is defined by: 
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so: 
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These torque equations are true in general. In terms of the Euler angles e , 1 , and 

t the angular velocities are given by: • f 
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The relevant lagrangian is developed in Note 370(4) and is: 
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with Lagrange variables r, - e , and 7 . The lagrangian is a sum of the 

translational kinetic energy of the centre of mass of the asymmetric top: 

--

its rotational kinetic energy: 
• 

and the potential energy 

which is general a function of all four Lagrange' variables. The dynamics are defined 

completely by the four Euler Lagrange equations: 
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which can be solved by Maxima as in the immediately preceding papers. 

In terms of spherical polar coordinates (Note 370(5)) the spin connection matrix is: 
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where the subscript 1 is used to distinguish the angles of the spherical polar coordinate system 

from the Euler angles. So: 

and the angular velocity vector in frame (1, 2, 3) is: • 
• • 
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The rotational kinetic energy of a freely rotating asymmetric top is therefore: ) 
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and the simultaneous solution of the two Euler Lagrange equations: 
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asymmetric top. Some calculational details are given in Note 370(5), and the algebra can be 

worked out completely by Maxima. 

Therefore the angular velocity vector in frame (1, 2, 3) expressed in the spherical 

polar and Eulerian systems is: 

-

and it follows that: 
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This is the relation between angles of the spherical polar coordinates and the Euler angles in 

the rotating frame (1, 2, 3). 

Both the Euler angles and the spherical polar coordinates should be used in general 

to extract all the dynamical information for a given problem. Consider the asymmetric top 

gyroscope with one point fixed, so that the origins of frame (X, Y, Z,) and (L 2. 3) are the 

same. There is no translational kinetic energy because the point is fixed, so the lagrangian in 



in which the potential energy is: 

where h is the distance from the origin to the centre of mass along a principal moment of 

inertia axis. The latter is inclined at an angle e to the Z axis of the laboratory frame. 

Herem is the mass of the gyroscope and g is the acceleration due to gravity. The Lagrange 

variables are the Euler angles, and there are three Euler Lagrange equations: 
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and the 

angular velocities: 8 I f 1 ~ which define the nutations and precessions of the 

gyroscope. 

In the spherical polar representation of frame (1, 2, 3) the same lagrangian is: 
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e, ( tJ j (t)andangularvelocities B 1 , which can be solved for the trajectories , 

f\ . These define the precessions and nutations in another way. The numerical 

solutions must be checked for consistency using Eq. ( ~ l ). 
The angular velocity in general is: 

-
in the frame ( 1, 2, 3) of the principal moments of inertia. The angular momentum in this 

frame is: 

\_ - Q .L, CJ, _, 
-

and the torque components in this frame are given by the Euler angles as in Eqs. ( 

( \3 ). In general, the torque in the laboratory frame is: 

\ -\j ( )'.. f -
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where r is the position vector from the origin to the point where the force F is applied. The -
force is defined by: 

-
where U is the potential energy. The laboratory frame force that must be applied to give a 

potential energy of the type ( 3 '1 ) is: 

---



in the spherical polar coordinates of the laboratory frame. Therefore the force is: 
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and the laboratory frame torque that must be applied to give the potential energy ( 5 ~ ) is: 
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where: 
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in the spherical polar coordinate system of the laboratory frame. Therefore the torque that 

must be applied is: 

where the unit vectors of the spherical polar coordinate system of the laboratory frame are 

defined by: :L+ )<.. ~ (" - e & 
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Conve11ing to Cartesian coordinates: 
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so the laboratory frame torque is: 
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The tor(.ue balance equation is ~efore: 
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and the gyroscope does not fall over as in the simple spi1ming top. Having exemplified the 

mathematics in detail as above, any additional laboratory frame torque may now be applied 



and the Laithwaite experiment may be simulated. 

Two fm1her examples are given in Notes 370(8) and 370(9) of the application of 

Cm1an geometry to rotational dynamics: a dumbbell model of the earth's orbit around the sun, 

the earth being modelled by a dumbbell gyroscope, and in Note 3 70(9) the translational 

kinetic energy of a gyroscope is worked out in terms of the Euler angles and the spherical 

polar coordinates. 

3. NUMERICAL SOLUTIONS AND GRAPHICS. 

Section by Dr. Horst Eckardt 
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3 Numerical solution and graphics

We consider an example where the rotation is desribed by two mass points with a
�xed coupling of distance 2h, a so-called dumbbell-model, see Fig. 1. There is a
spherical coordinate system (θ, φ) with origin in the middle of the connection of
the two masses (red). This is the centre of mass which rotates around a central
mass (blue) with another set of spherical polar coordinates (θ1, φ1, r). The
coordinate transformation of the two masses to cartesian coordinates relative to
the centre of mass is

h1 = h

sin θ cosφsin θ sinφ
cos θ

 , h2 = −h1 (65)

and the coordinate R of the centre of mass is

R = r

sin θ1 cosφ1sin θ1 sinφ1
cos θ1

 . (66)

The Lagrange formalism requires the coordinates of both masses in the global
cartesian system:

r1 = R+ h1, (67)

r2 = R+ h2. (68)

Their kinetic energy is

Ekin =
1

2
m (ṙ1ṙ1 + ṙ2ṙ2) . (69)

For the potential energy we make an approximation which holds when the two
masses stay far from the gravitational centre which is the case for planets for

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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example. Instead of using r1 and r2 we insert r, obtaining the sum of potential
energy of both masses:

Epot = −2
mMG

r
. (70)

The Lagrangian then takes the simple form

L = m
(
r2(θ̇21 + φ̇21 sin(θ1)

2) + h2(θ̇2 + φ̇2 sin(θ)2)
)
+ 2

mMG

r
(71)

and the Euler-Lagrange equations according to (34,35) for the �ve Lagrangian
variables are:

θ̈ = φ̇2 cos(θ) sin(θ), (72)

φ̈ = −2θ̇φ̇ cos(θ)

sin(θ)
, (73)

θ̈1 = −2ṙθ̇1 − φ̇1
2
r cos(θ1) sin(θ1)

r
, (74)

φ̈1 = −2rθ̇1φ̇1 cos(θ1) + 2ṙφ̇1 sin(θ1)

r sin(θ1)
, (75)

r̈ = rθ̇1
2
+ rφ̇1

2
sin(θ1)

2 − MG

r2
. (76)

Numerical solution with the Maxima code gives the results shown in Figs. 2-4.
Obviously the central coordinates (θ1, φ1, r) decouple from those local to the
dumbbell masses (θ, φ). The latter show oscillations of nutation and precession,
see Fig. 2. From the trajectory graph of the central coordinates (Fig. 3) can be
seen that θ1 stays at its initial value of π/2, i.e. the motion takes place in a plane
and is not distorted by the dumbbell. The radius oscillates between a maximum
value and the half of it, it is an elliptic orbit. Correspondingly, the azimuthal
angle φ varies with di�erent velocities, they are higher at the perihelion as is
well known from motion of planets.

In Fig. 4 the orbits of the centre of mass (blue) and one of the dumbbell
masses (red) are graphed. The central planar motion can be seen which is
overlaid with a three-dimensional oscillation of the masses. This may serve as
a simple model for the Milankowitch cycles. The latter are very slow compared
to one orbit, here we have chosen the parameters in a way that the deviations
from the ellipse can be seen easily.

As another example we solve the motion of a rotating rigid body in spherical
polar coordinates as described by Eqs. (33-35). This leads to the equations of
motion

θ̈1 =
(I2 − I1)φ̇1

2
cos(θ1) sin(θ1)

I3
, (77)

φ̈1 = −2(I2 − I1)θ̇1φ̇1 cos(θ1) sin(θ1)

I1 cos(θ1)2 + I2 sin(θ1)2
. (78)

It is seen that these equations transform to free motion in the case I1 = I2,
i.e. the right hand sides become zero. A symmetric top rotates with constant
angular velocity. The equations have been solved for I1 = 1, I2 = 1.5, I3 = 2.5

2



and the solutions are graphed in Fig. 5. The polar angle θ describes a nutation
and φ increases irregularly. The reason is the oscillating behaviour of the angular
velocity vector ω whose components are graphed in Fig. 6. The modulus of ω
is not constant, this is not a constant of motion.

Figure 1: The rotating dumbbell model with coordinates.
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Figure 2: Rotating dumbbell, trajectories θ(t) φ(t).

Figure 3: Motion of centre of mass, trajectories θ1(t), φ1(t), r(t).
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Figure 4: Orbit of the centre of mass (blue) and one dumbbell mass (red).

Figure 5: Rotating rigid body, trajectories θ1(t) φ1(t) in spherical coordinates.
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Figure 6: Rotating rigid body, angular velocities ω1,2,3 and modulus of ω.
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