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ABSTRACT 

Orbital precession is shown to be the result of ECE2 relativity and the relevant 

lagrangian, both in two dimensional and three dimensional orbits. For example, precession of 

the perihelion of Mercury can be produced by this theory. Einsteinian general relativity is not 

only incorrect but irrelevant. The same type of lagrangian analysis is applied to find novel 

equations of quantum mechanics. 

Keywords: ECE2 relativity, orbital precession from the lagrangian, lagrangian quantum 

mechanics. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 12}, ECE2 lagrangian theory has been applied 

to the dynamics of gyroscopes, three dimensional orbits and a novel lagrangian quantum 

mechanics. In Section 2 it is shown that the lagrangian of ECE2 special relativity leads to 

orbital precession without use of the incorrect and obsolete Einsteinian general relativity. 

ECE2 relativity has been developed in UFT313 ff. on combined sites \V\vw.aias.us and 

\VWw.upitec.org .. It has the structure of special relativity, but is developed in a space with 

non zero torsion and curvature. Therefore the ECE2 lagrangian is the lagrangian of special 

relativity. The relevant Euler Lagrange equations can be solved simultaneously with the same 

numerical methods as used in UFT368 to UFT371. This solution leads directly to a 

precessing orbit which can be compared with astronomical data as in Section 3. The same 

lagrangian methods lead to novel results of general utility in quantum mechanics. These new 

equations of quantum mechanics are summarized in Section 2. 

This paper is a brief synopsis of extensive calculations found in the accompanying 

notes for UFT372 on W\V\V.aias.us. Note 372(1) gives the basic equations of the new 

lagrangian approach, exemplified by the H atom. The latter is described in terms of a 

quantized plane elliptical orbit. Note 3 72(2) discusses the 1 = 0 state ofthe hydrogen atom, 

and Note 372(3) sets up the hamiltonian for the helium atom. Notes 372(4) and 372(5) give 

details of the calculation of the relativistic orbit and notes 372(6) to 372(8) develop new 

general equations of quantum mechanics from the lagrangian method. 

Section 3 gives graphical results for the precessing orbit, and makes a comparison 

with the astronomical data for the precession of the perihelion of planets in the solar system. 

It also discusses Moebius orbits. 
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2. PRECESSING ORBITS AND LAGRANGIAN QUANTUM MECHANICS 

Consider the lagrangian of ECE2 relativity { 1 - 12}: 

J 'l( "lj''~ - Ill.. \-" - -·~c.. -
") 

G-

in which a mass m orbits a mass M in a plane defined by the plane polar coordinates 

( r, f ). The magnitude of the distance between m and M is r, and the orbital velocity 

ofm is: • "l ) ~ J 
( ;- < l -(~ --

Here c is the speed of light in vacuo. The proper Lagrange variables are r and f , and 

the Euler Lagrange equations are: 

di - ~ di -&) - -- ott ;)( d( 

and 

J;[ - (4-). ;)f - ~ -- - • 

~t ot± df 
These are solved simultaneously to give: • - Cs) -- { - . 
and the orbit 

' -
Q.E.D. The numerical method uses Runge Kutta integration with Maxima as described in 
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UFT368 to UFT371. The orbit is a precessing ellipse, Q.E.D., and is graphed in Section 3. 

A precessing ellipse is therefore produced by ECE2 relativity, there is no need for the 

obsolete and incorrect Einstein theory. 

The three dimensional lagrangian is the same as Eq. ( 1 ), but: 

. ~ ') . ~ 
{ + ( ~ h) 

where . ) 
8 

in the spherical polar coordinates system ( r, 8 f ), The proper Lagrange variables 

are r, e , and f , and the three Euler Lagrange equations are: 

Jf - L Jt - (") 
o( A ~( 
Jf _ _L J 1 (to\ F ett r~e - - . J 

c)! ,_ ~ Jf ~(t0 
Jf ~ cif 

These are solved simultaneously in Section 3 and again give a precessing orbit, the details of 

which are graphed in Section 3. In this case the precessing planar orbit can be tilted with 

respect to orbit given by plane polar coordinates. In certain circumstances this can give rise 

to astronomically observable Moebius strip orbit!> as graphed in Section 3_ 

In theory, this orbital Lagrange theory can be applied to the quantization of the 

hydrogen (H) atom by using the Coulomb potential: 



in the lagrangian ( .1_ ). Here e is the charge on the proton. and ( 0 the vacuum 

permittivity. The classical velocity of the electron in the H atom is: 

~ .,. ( ~< -\- (8 ~e + ( f s.-.__e 3-f ~('0 
in spherical polar coordinates. with unit vectors 3:-.' . .g_ e . and 12 <f> 

Quantization takes place as follo~·s{ ~ -::. £ i _ ( \1+) 

){ ~ 
_; t ~ i - i 1 ( tS) 

where the gradient of the wavefunction is: 

\ Y!._ i-r 
~i ~ 

~ \ ~ ~B -\-- -\-- --<" J8 (Sta-8 Jcf J( ' - (lb) Nottthat the relativistic energy: 

f 't~: -Cn) 
and momentum: 

- (t~) 
~ - "{ ~ '\,[ --

are used in the quantization. 

The first order quantum equations are ~herefore: 

... -
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There is also the second order equation: 

In the non relativistic limit these equations become: 

and: 



In preceding UFT papers and in UFT270, the lagrangian method was used on the 

classical level to give the classical angular momenta: 

(e) 
and 

It is well known { 1 - 12} that these quantize as follows for all atoms and molecules: 

t) 1 .,_ u (_ ~ \- \) t - l ?.t) 

l~t~--t~~i (3)) 
where 1 is the angular momentum quantum number and where: 

~..{ .,_ - ~ ) --. , e 
is the azimuthal quantum number. 

By quantum classical equivalence ,, 
l,_ i -- -r~-r 

giving the expectation value of Lagrangian quantum mechanics: 

(__ ~/ + s:h.") e '> 
Simi!( r~? (~ (e) t + \.~e 'j '> -
so 

~~ 
Jt· 



From Lagrangian theory on the classical level: 

~( e ~ ") . ( 
giving the expectation value: 

< L"l- L~ 
$\"-') 8 

of Lagrangian quantum mechanics. 

From Eqs. ( "ll ) and ( '-\-\ ): 

. 
-\ 
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From Eqs. ( }l ) and ( .)q ): 

'"' L~ L .(. - '- --
~ "') 

s.-" 8 
These are fundamental equations of Lagrangian quantum mechanics. 

3. COMPUTATIONAL AND GRAPHICAL RESULTS 

Section by Dr. Horst Eckardt 
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3 Computational and graphical results

3.1 Relativistic Lagrange equations

The relativistic Euler-Lagrange equations (9-11) in three dimensions, based on
the Lagrange function (1), have been worked out by computer an solved nu-
merically as descirbed in previous papers. Spherical polar coordinates (r, θ, φ)
are used. By re-inserting the terms γ = 1/

√
1− v2/c2 and v from Eq. (7) they

take the form:

θ̈ = −
(
2γc2r −GM

)
ṙ θ̇ − γc2 φ̇2 r2 cos (θ) sin (θ)

γc2 r2
, (46)

φ̈ = −
φ̇
(

2γc2 r2 cos (θ) θ̇ +
(
2γc2r −GM

)
ṙ sin (θ)

)
γc2 r2 sin (θ)

, (47)

r̈ = −
(
γc2r −GM

)
ṙ2 − γv2 c2r +GM c2

γc2 r2
. (48)

By the transition c→∞, one obtains the non-relativistic form:

θ̈ = φ̇2 cos (θ) sin (θ)− 2ṙ θ̇

r
, (49)

φ̈ = −2φ̇ cos (θ) θ̇

sin (θ)
− 2φ̇ ṙ

r
, (50)

r̈ = r θ̇2 + φ̇2r sin (θ)
2 − GM

r2
. (51)

For planar orbits it is su�cient to write the equations in two dimensions. This
corresponds to omitting the polar angle θ:

φ̈ = −
(
2γc2r −GM

)
ṙ φ̇

γc2 r2
, (52)

r̈ = −
(
γc2r −GM

)
ṙ2 − γv2 c2r +GM c2

γc2 r2
. (53)
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Again, the non-realitistic transition can be made, resulting in the well-known
form

φ̈ = −2ṙ φ̇

r
, (54)

r̈ = r φ̇2 − GM

r2
. (55)

It is possible to rewrite Eqs. (52, 53) further. With the abbreviation

r0 =
2MG

c2
(56)

(Schwarzschild radius) they take the form

φ̈ =

(
r0

2γr
− 2

)
ṙ φ̇

r
, (57)

r̈ = r φ̇2 +
r0

2γr2
ṙ2 − GM

γr2
= r φ̇2 +

1

2
r0
(
ṙ2 − c2

) 1

γr2
. (58)

It is seen that this is identical with the non-relativistic form, augmented by
one term of order 1/c2 each (represented by r0). Since the product ṙφ̇ takes
both signs around the perihelion, we have a symmetric modi�cation of angular
acceleration in this region. The gravitational potential is modi�ed by the γ
factor but more important is the additional term introducing a dependence on
ṙ which was not there in the non-relativistic case. From the right-most form of
Eq. (58) we see that the potential is counteracted by ṙ. In the ultrarelativistic
case the potential is nearly without e�ect.

The solutions of Eqs. (46-48) are graphed in Fig. 1. This is a gravitational
planetary system with model parameters chosen so that relativistic e�ects are
visible. The motion stays planar even in the relativistic case. The radial os-
cillations of the periodic orbit can be seen. The orbit looks regular, however
inspection by the orbit plot (Fig. 2) shows that it is a precessing ellipse. The
plane of motion is tilted against the XY plane by the intitial conditions of θ̇.
The graph of angular momenta L and LZ (Fig. 3) shows that these are no more
constants of motion in this relativistic case. The γ factor is graphed in Fig. 4.
It is shows peaks at the perihelion where orbital velocity is much higher than
at aphelion. This variation demonstrates that we have a solution of general
relativity.

3.2 Perihelion precession of Mercury

One of the few experimental con�rmations of Einstein's theory of general rela-
tivity was the explanation of perihelion precession of planet Mercury. This is a
tiny e�ect, and in�uences of other planets on the Mercury precession are much
larger than the part explained by Einstein. This was extensively discussed in
UFT 239. In UFT 322 we mentioned that the observed precession of the peri-
helion is 7.9673 · 10−7 radians per year. Since Mercury has an orbital period of
88.0 days, the precession angle per one revolution is

∆φ = 7.9673 · 10−7 · 88.0

365.25
rad = 1.9196 · 10−7rad. (59)
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This is a very small value, therefore a calculation of orbital time evolution has to
be highly precise. We cannot do this without considerable numerical e�ort. As
an alternative, we propose an interpolation scheme where the orbit is calculated
by arti�cially increased relativistic e�ects, ∆φ is determined from the orbit and
then an extrapolation is made to the real value of the relativistic parameters.
The Schwarzschild radius r0 could be used for this in Eqs. (57, 58). Then the
algoritm is:

• Compute ∆φ(r1) where r1 is an increased r0

• repeat for several values r2, r3,... for building up a function ∆φ(ri)

• extrapolate function ∆φ(ri) for value r = r0

By this algorithm the numerical precision can be checked simultaneously.

3.3 Moebius orbit

In cosmology some extraordinary structures like a Moebius strip can be ob-
served. This strip structure has been tried to reproduce by a simple calculation.
We used two masses orbiting a common centre in tilted orbits. The two masses
are independent, i.e. there is the assumption that the interaction between orbit-
ing masses is small compared to the gravity of the centre. This seems reasonable.
The initial condition for φ of the second mass has been shifted slightly so that
both orbits have no common points. Fig. 5 shows the orbits, in Fig. 6 the dif-
ference vector between both masses has been plotted. This shows the structure
of a Moebius strip. It is assumed that there are much more than two masses
moving in the 2D area between the two plotted orbits.

This is a quite simple and classical explanation of the observed Moebius
structure. In cosmic dimensions, the Moebius strip extends over distances
where the gravitational law is not valid any more. The model calculation of
the Moebius strip should better be made by an electric potential, representing
the electric or plasma universe. However the electrostatic potential is of type
1/r like the gravitational potential. Therefore the result will be qualitatively
the same as for the gravitational case we worked out.

3.4 Radial Schrödinger equation

As an example for showing the applicability of the Lagrange mechanism in
atomic physics, we solved the radial Schrödinger equation for Hydrogen

d2ψ

dr2
+

2

r

dψ

dr
− l (l + 1)ψ

r2
=

(
1

n2
− 2

r

)
ψ (60)

numerically. n is the principal quantum number and l is the angular momentum
quantum number. Both are related to the classical orbital parameters of ellipses
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n l a α ε
1 0 1 0 1
2 0 4 0 1
2 1 4 3 0.7071
3 0 9 0 1
3 1 9 2 0.8819
3 2 9 6 0.5774

Table 1: Parameters of an ellipse in dependence of quantum numers n, l.

via

a =
~n2

αf mc
(61)

α =
~ l (l + 1)

αf mc
(62)

ε =

√
1− l (l + 1)

n2
(63)

where αf is the �ne structure constant, m the electron mass, a the semi major
axis of the orbit, α the half-right latitude and ε the eccentricity. Using atomic
units, The values of a, α and ε have been computed from the quantum numbers
as shown in Table 1. Obviously α is zero for all s orbitals, and eccentricity is
unity.

Some numerical solutions of Eq. (60) are graphed in Figs. 7 and 8 and
compared with the analytically known solutions that we have used in earlier
papers. For the calculation, the choice of initial conditions is a certain problem.
To have a fair comparison, we used the values for ψ and dψ/dr at the �rst r
grid point from the analytical solution. Then both the numerical and analytical
result lie on each other without visible deviations, giving perfect coincidence.
If the initial conditions are taken di�erently, the curves swing into the correct
course within very few grid points.
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Figure 1: Relativistic trajectories θ(t), φ(t), r(t).

Figure 2: Orbit r(X,Y, Z) of a precessing ellipse.
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Figure 3: Non-relativistic constants of motion L and LZ .

Figure 4: Relativistic γ factor.
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Figure 5: Orbits r(X,Y, Z) of two masses representing a Moebius strip.

Figure 6: Di�erence of orbit vectors representing a Moebius strip.
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Figure 7: Comparison of Hydrogen orbital 3p (numerical and analytical).

Figure 8: Comparison of Hydrogen orbital 3d (numerical and analytical).
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