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ABSTRACT 

It is shown that a precessing planar orbit is produced by ECE2 fluid gravitation, 

using a general theory based on the Hamilton Principle of Least Action and the lagrangian of 

fluid dynamics. The correct Euler Lagrange equation and canonical formulation is defined. 

Orbital precession is caused by a fluid spacetime described by the classical equations of fluid 

dynamics. Any coordinate system can be used, and it is shown that precession is produced by 

Cartesian coordinates. 

Keywords: ECE2 fluid gravitation, orbital precession in a plane, gravitational Navier Tokes 

equation. 



1. INTRODUCTION 

In preceding papers of this series { 1 - 12} it has been shown that ECE2 fluid 

gravitation produces orbital precession, notably in UFT363. In Section 2 the theory of 

UFT363 is developed with the Hamilton principle of least action and a generally valid 

classical, canonical formulation of fluid gravitation. The canonical formulation is valid for 

any coordinate system and is exemplified by the production of a precessing planar orbit on the 

classical level using Cartesian coordinates. Therefore Einstein's general relativity is 

unnecessary as well as being erroneous in many well known ways { 1-12} . This paper is a 

brief synopsis of extensive calculations contained in the notes accompanying UFT374 on 

combined sites (v.'\vw.aias.us and www.upitec.org) and in the web archives 

(www.archive.org and W'\vw.webarchive.org.uk) . 

Note 374(1) describes orbital precession in an incompressible fluid spacetime. 

Notes 374(2), 374(3) and 374(7) give all details ofthe general canonical theory of fluid 

gravitation, using the Hamilton principle of least action and the Lagrange and Hamilton 

equations of motion. A simple and useful lagrangian is derived for fluid gravitation and fluid 

dynamics in general. Note 374(4) introduces a time dependence into the spin c01mection 

defined in UFT363. Note 374(5) gives the general planar orbit of fluid gravitation and defines 

the transition to Newtonian orbital theory. Note 374(6) defines the gravitational Navier 

Stokes, continuity and vorticity equations. 

Section 3 is a numerical and graphical analysis, and shows that orbital precession 

can be produced on the classical level using Cartesian coordinates. This means that it is not 

necessary to use relativity to produce a precessing orbit, although ECE2 relativity is necessary 

in other contexts, and also produces precession. The Einstein theory of orbital precession is 

unnecessary and contains many errors { 1 - 12} as is well known. 



2 CANONICAL FORMULATION OF FLUID GRAVITATION. 

Consider the velocity field of fluid spacetime { 1 - 12} or aether: 

in plane polar coordinates ( r, 1 ). As in UFT361 the total time derivative of the velocity 

field is the convective or Lagrange derivative: 
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These are equations of fluid ECE2 covariant fluid gravitation defined by the gravitational 

Navier Stokes equation: 

-

in any coordinate system. In Section 3 the Cartesian system of coordinates is shown to 

produce orbital precession from Eq. ( ~ ). 

The transition to classical, single particle, dynamics is defined by: 
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i.e. by: (i) 

In the limit of classical, single particle dynamics: 
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The ECE2 equation of fluid gravitation is: 
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and can be identified with the gravitational Navier Stokes equation of classical fluid 

dynamics. It is shown in note 374(6) that the continuity equation of fluid gravitation is: 

where 

is the specific volume of fluid spacetime. This is the equation of conservation of matter in 

the fluid spacetime. In plane polar coordinates: 
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It follows that: 
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In the limit of classical dynamics: 
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Eq. ( \ ~ ) corresponds to a circular obit, in which 
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The area and volume ofthe orbit do not change with time. 

The orbital vorticity equation is calculated from: 
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and as shown in Note 374(6) is: 
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where 
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is the vorticity of fluid spacetime. Eq. ( ) \ ) is the equation of conservation of angular 

momentum of fluid spacetime. 

In the Newtonian limit the gravitational Navier Stokes equation reduces to: 

so the gravitational vo11icity equation reduces to: 

- 0 

I.e.: 
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because: 
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So in the Newtonian limit: 
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because: 

It follows that 

in the Newtonian limit, in which the orbit is an ellipse. 

The orbit from ECE2 fluid gravitation is however, a precessing ellipse. This is an 

imp01iant result and is illustrated in Section 3 using Cartesian coordinates. Provided that the 

spacetime is considered to be a fluid aether, precession of a planar orbit is produced by the 

classical equations of fluid dynamics. 

The gravitational Navier Stokes equation ( ·'\ ) is produced from the lagrangian 
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is the vector field ofthe position of an element of fluid spacetime. The Euler Lagrange 

equation of relevance is: 

- J. --ott 
From Hamilton's principle of least action the lagrangian must have the functional 

dependence: 

The velocity field is defined by the convective derivative of the position element: 
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Note carefully that the potential energy: 
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can be a function of r(t) and 1 L t') . In classical gravitational theory it is a function only of 

r as is well known. 

Note 374(2) is a summary of the canonical formulation of classical dynamics, whose 

hamiltonian is: 
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The Lagrange equations of motion are: - c~~ 
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The Hamilton. or canonical, equations of motion are: 
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In plane polar coordinates: 
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and the classical momentum is: • 
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Note carefully that the correct Euler Lagrange equation in classical dynamics is: 
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where we have used: 
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and the Euler Lagrange equation ( \ '\) gives: 
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Q.E.D. 

The basis of the Lagrangian method is the Hamilton principle of least action: 



where the kinetic and potential energies must have a functional dependence as follows: 
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shows that classical dynamics leads to: ( ":» ( ~f~ ~-mJ ( 
• •• 

~(cf tff -
. L' 
f ... Yh<") . 

These have been solved numerically in this work (see Section 3) to give the well known 

elliptical (or conic section) orbit: 

\ t f (0~ 1 
Here J is the observable half right latitude and f is the observable eccentricity. 

The angular momentum magnitude Lin Eq. ( b'd...) is a constant of motion obtained from: 

L - -
Eqs. ( b 0 ) to ( ~}) are solved numerically using Ma~ima to give the differential orbital 

function: 
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In UFT363, the gravitational Navier Stokes equation ( '\ ) was 

approximated to give the momentum: 

-
where: 
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The simultaneous equations ( to ) to ( b l) are modified to: 
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when solved numerically these equations give a precessing ellipse as observed in astronomy. 

The x factor can be considered to be time dependent as in Note 374(4). The result is again a 

precessing ellipse. 

Note carefully that the lagrangian from Eqs. ( lt=O ) and ( bl ) is: 



However, if it is assumed that the proper Lagrange variables are the Euler 

Lagrange equation: 
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The use of Eq. ( \ ~) is incoiTect because the lagrangian ( \.3>) does not satisfy the 

fundamental functional requirement ( S ~ ) of the Hamilton principle of least action. The 

lagrangian ( \3> ) contains a kinetic energy: l "l • ) J j, ) \ _ ( "ll \ 
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The equation ( \ ~) is fortuitously coiTect if and only if: 

which is true only in the Newtonian limit of classical dynamics. For fluid gravitation the 

general canonical formalism must always be used. 



These points are illustrated in Section 3, where a precessing orbit is obtained on the 

classical level with Cartesian coordinates. 

3. COMPUTATION AND GRAPHICS 

Section by Dr. Horst Eckardt 
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3 Computation and graphics

3.1 Models for Rr

We start the numerical results section of central motion with a model for the
spin connection function Rr de�ned in Eq. (69). Rr enters the function x of
(68) which appears in the equations of motion (70-71). With the approach

∂Rr(r)

∂r
= 1 + f(r) (80)

the equations of motion take the form:

φ̈ = − (f(r) + 2) ṙ φ̇

r
, (81)

r̈ =
r φ̇2

f(r) + 1
− MG

r2(f(r) + 1)
. (82)

During all calculations we used a model with m = 1,M = 10, G = 1. In Fig. 1
the resulting orbit is graphed with parameters

f(r) = a0, (83)

a0 = −0.06. (84)

This gives a constant function Rr and the result should be comparable with the
model of a constant spin connection which was already investigated in UFT363.
As can be seen from Fig. 1, there is a clear precession of the elliptic orbit as
was found in UFT363.

Then a less trivial model with

f(r) = a0 r, (85)

a0 = −0.006 (86)

was used and the results are graphed in Fig. 2. There is a precession too. The
radial variation of Rr obviously does not change the type of deviation from the

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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Newtonian elliptic orbit. That the orbit is not Newtonian can also be seen from
Fig. 3 where the angular momentum

L = mr2φ̇ (87)

is displayed. This shows a signi�cant variation over time, correlated with the
position of the mass m in the orbit.

3.2 Models for x

Next we investigated a time-dependence of the function x. Then the normalized
equations of motion (70-71) read:

φ̈ = − ṙφ̇(x+ 1)

r
, (88)

r̈ =
1

x

(
rφ̇2 − MG

r2

)
. (89)

The coe�cients of the di�erential equations now dependent on time by x(t).
When de�ning a periodic time dependence

x = 1 + a0 sin

(
t

2

)
(90)

with a0 = 0.03 we obtain the result of Fig. 4. This orbit is an ellipse with varying
radius but no visible precession. Obviously a time dependence of x e�ects a
di�erent type of behaviour than a radial dependence, at least in this example.
The corresponding angular momentum is graphed in Fig. 5, manifesting a
variation on a time scale smaller than a full orbit. This is the e�ect of the
oscillatory term in Eq. (90).

3.3 Models for a �uid velocity �eld

The general planar orbit of �uid gravitation is de�ned by a velocity �eld v(r(t), φ(t), t),
see the gravitational Navier Stokes equation (4). The x factor can be integrated
into the �uid velocity as worked out in note 374(5). The approach for the
components of v is:

vr = x ṙ, (91)

vφ = r φ̇ (92)

with a full coordinate dependence of x:

x = x(r(t), φ(t), t). (93)

The appearance of v leads to a di�erent set of equations of motion compared
to (88-89), therefore we have to introduce a factor s to �switch on� the �uid
velocity in a continuous transition:

vr = s x ṙ, (94)

vφ = s r φ̇ (95)

(96)
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with 0 ≤ s ≤ 1. This gives an extended set of equations of motion:

φ̈ = − ṙφ̇(s
2x+ x+ 1)

r
, (97)

r̈ =
1

x

(
rφ̇2 − ṙẋ− ṙ2

∂x

∂r
− ṙ φ̇

∂x

∂φ
(s2 + 1)− MG

r2

)
− s2ṙ2

∂x

∂r
. (98)

All partial derivatives of x appear in the above equation. We consider a model
with an oscillatory φ dependence:

x = 1 + a0 sin(φ/2). (99)

Setting a0 = 0, s = 1 leads to x = 1, describing a model with a factor of 3
instead of 2 in Eq. (61). The result is an elliptical rosette orbit as shown in Fig.
7. This makes clear that we need a possibility for reducing the e�ect of �uid
velocity to achieve a continuous transition from an orbit with no �uid velocity.
The solution is introducing the factor s as described above.

Another example is a0 = 0.2, s = 0.1: This gives a kind of elliptical spiral, see
Fig. 7. Very exotic orbits are possible by corresponding choice of parameters.

3.4 Fluid velocity models with Cartesian coordinates

So far we haave used planar polar coordinates. We can use Cartesian coordinates
instead. We investigate a model of simpli�ed �uid dynamics by adding a velocity
term v(X,Y, t) to the kinetic energy term in the Lagrangian:

L =
m

2

(
(Ẋ + v̇X)2 + (Ẏ + v̇Y )

2
)
+

mMG

(X2 + Y 2)3/2
. (100)

The Lagrange formalism leads to an extended set of equations of motion:

Ẍ =
(
Ẋ + vX

) ∂vX
∂X

+
(
Ẏ + vY

) ∂vY
∂X

− v̇X −MG
X

(X2 + Y 2)3/2
, (101)

Ÿ =
(
Ẏ + vY

) ∂vY
∂Y

+
(
Ẋ + vX

) ∂vX
∂Y

− v̇Y −MG
Y

(X2 + Y 2)3/2
. (102)

Our �rst model for the velocity is:

vX = a0X, (103)

vY = a0Y. (104)

Then for the equations of motion (101-102) follows:

Ẍ = a20X −MG
X

(X2 + Y 2)3/2
, (105)

Ÿ = a20Y −MG
Y

(X2 + Y 2)3/2
. (106)

There is an additional linear term appearing. There are no centrifugal or Coriolis
terms since Cartesian coordinates represent a static frame where these e�ects
are all contained in. When setting a0 = 0.05, we obtain the result graphed in
Fig. 8 which is a rosette orbit very similar to that in in Fig. 6. Obviously
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precession of orbits can be obtained in various ways. A second, slightly more
complicated model is

vX = a0X
2, (107)

vY = a0Y
2. (108)

This leads to cubic terms in the equations of motion:

Ẍ = a20X
3 −MG

X

(X2 + Y 2)3/2
, (109)

Ÿ = a20Y
3 −MG

Y

(X2 + Y 2)3/2
. (110)

(111)

We have to reduce the parameter to a0 = 0.005 to obtain non-diverging solu-
tions. In this case it is an orbit which is periodic in multiples of 2π, see Fig. 9.
In total we see that �uid dynamics e�ect can alter orbits to all kinds of exotic
motion. The universe is a source of multifaceted discoveries.

Figure 1: Orbit of model f(r) = a0, Eqs. (80-82).
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Figure 2: Orbit of model f(r) = a0 r, Eqs. (80-82).

Figure 3: Angular momentum corresponding to orbit of Fig. 2.
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Figure 4: Orbit of x model de�ned in (90).

Figure 5: Angular momentum corresponding to orbit of Fig. 4.
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Figure 6: Orbit of �uid velocity model with x = 1.

Figure 7: Orbit of �uid velocity model from Eq. (99).
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Figure 8: Orbit of Cartesian �uid velocity model from Eqs. (103-104).

Figure 9: Orbit of Cartesian �uid velocity model from Eqs. (108-109).
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