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Abstract

The interaction of quarks and gluons inside a given elementary particle is de-
scribed through the use of two or more simultaneous Evans wave equations and
the equivalent minimal prescription. Approximate quark flavor symmetry in
the quark gluon standard model is replaced by the mathematically required
exact quark flavor symmetry perturbed by quark gluon momentum exchange.
Therefore the apparently different observed quark masses are the result of the
interaction of a confined quark with a massive gluon field inside an elementary
particle or between confined quarks in different elementary particles. There-
fore the six quarks initially have the same mass but different flavors in the
hypothetical free state (single quark state of the Evans wave equation), but the
different interactions of quark and gluon inside a given elementary particle re-
sult in the apparently different confined quark masses observed experimentally.
These masses are more accurately the average result of different and transient
momentum exchanges of massive quark and massive gluon. Quarks have only
been observed to date in a confined state, where quark gluon interaction is al-
ways present inside an elementary particle or between two elementary particles.
This is essentially a multi particle momentum exchange problem between quark
and gluon. Many such interactions are possible because there are six quark fla-
vors of SU(n) symmetry and three quark colors of SU(3) symmetry in general,
giving rise to many possible permutations and combinations and therefore to
many types of elementary particle as observed experimentally. The Evans uni-
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12.1. INTRODUCTION

fied field theory is rigorously objective (i.e. generally covariant) throughout and
in consequence there can be no massless particles, the radiated gluon is therefore
massive and not massless as in the standard model. The gluon field has SU(3)
symmetry and is also described by an Evans wave equation. The many possible
types of interaction between quarks and gluons is therefore always described
by simultaneous Evans wave equations defining momentum exchange. These
equations must be solved numerically and simultaneously in general with given
initial and boundary conditions.

Keywords: Evans unified field theory, quark gluon model, flavor symmetry, color
symmetry, gluon potential field.

12.1 Introduction

In the standard model of quark gluon interaction [1] there are six quark flavors
u, d, s, c, t and b and three quark colors R,W, and B. The quarks are matter
fields. The potential of the radiated gluon field also has SU(3) symmetry [1]
and in the standard model the various gluons are considered to be a massless
particles. The masses of the six quarks are not the same experimentally: u
and d for example have approximately the same mass but the mass of s is very
different. In contrast the masses of the left and right electron appearing in the
Dirac equation and observed in the Stern Gerlach experiment [2] (the effect of a
magnetic field of right design on an electron beam) are exactly the same within
contemporary instrumental precision. The right and left electrons are therefore
said to be degenerate in the absence of a magnetic field [1]. Therefore they can
be described by an exact symmetry, in this case the SU(2) symmetry of the
appropriate representation space of the Dirac equation. This SU(2) symmetry
implies the use of two Pauli spinors, one right and one left. These are both
column two vectors, which when superimposed on each other define the Dirac
four spinor, a column vector with four components. The Evans unified field
theory [3]– [18] shows that the Dirac equation is a limit of the Evans wave
equation defined by:

kT =
m2c2

~2
=
mk

V
. (12.1)

Here T is the scalar energy momentum density defined by the fundamental field
equation of relativity theory for all matter and radiated fields:

R = −kT (12.2)

where R is scalar curvature and k is Einsteins constant. In Eq.(12.1) m is
mass, ~ is the reduced Planck constant and c is the speed of light. Eqs.(12.1)
and (12.2) imply that every elementary particle and every quark and radiated
particle such as a photon and gluon have a rest volume defined by:

V =
~

2k

mc2
. (12.3)
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The Evans field theory shows that the Dirac spinor is a special relativistic ex-
ample or limit of the tetrad, the fundamental field of the Palatini variation of
general relativity [19]– [21]. The tetrad is the eigenfunction of the Evans lemma:

�qa
µ = Rqa

µ (12.4)

which gives the Evans wave equation:

(� + kT ) qa
µ = 0 (12.5)

using Eq.(12.2). The Dirac equation is obtained straightforwardly from the
Evans wave equation using Eq. (12.1) and a 2 × 2 tetrad:

qa
µ =

[
qR

1 qR
2

qL
1 qL

2

]
. (12.6)

Transposition of the two row vectors of the tetrad into two column vectors gives
the column four vector which is the Dirac spinor:

ψ =




qR
1

qR
2

qL
1

qL
2


 =

[
ξR

ξL

]
. (12.7)

The Pauli spinors are therefore identified as:

ξR =

[
qR

1

qR
2

]
, ξL =

[
qL

1

qL
2

]
. (12.8)

Therefore the Dirac equation is a result of differential geometry, because the
lemma (12.4) is an identity obtained straightforwardly from the standard tetrad
postulate [22] of Cartan’s differential geometry:

Dµq
a
ν = 0 (12.9)

where Dµ denotes the covariant derivative. This result is one of the major ad-
vances of Evans field theory because it allows the generally covariant description
of momentum exchange between any radiated and matter fields in nature. This
result yields an objective (i.e. generally covariant) description of all nature,
from quarks to cosmological objects, i.e. of any type of matter fields interacting
with any type of radiated field.

In Section 12.2 the approximate quark flavor symmetries of the standard
model are replaced by exact quark flavor symmetries perturbed by quark gluon
momentum exchange processes (of which very many are possible giving rise to
many observed elementary particles [1]). The interacting quark field and gluon
field are described by two or more simultaneous Evans wave equations which
must be solved numerically and simultaneously with given initial and boundary
conditions. In Section 12.3 consideration is extended to include the quark colors,
for each flavor there are three colors.
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12.2 Perturbation Of Exact Flavor Symmetry

By Momentum Exchange

In the standard model the use is made of approximate flavor symmetries. The
simplest is SU(2), in which the Dirac type spinor is [1]:

ξ =

[
u
d

]
. (12.10)

This is approximate because u and d do not have the same masses and are
therefore only approximately degenerate in the absence of a perturbing field. In
contrast the right and left electrons of the original Dirac equation are exactly
degenerate in the absence of a magnetic field as discussed already. This is
a severe conceptual problem for the standard model because in group theory
and in nature there can only be exact symmetries, no approximate symmetries.
The three quark model has SU(3) symmetry, the four quark model has SU(4)
symmetry and so on up to the SU(6) symmetry of the six quark model. These
symmetries are group symmetries and again cannot be approximate. In the
three quark model the Dirac type spinor is a three spinor:

ξ =



u
d
s


 . (12.11)

and so on up to the six spinor of the six quark model. The problem of approxi-
mate symmetry becomes worse and worse because the six quark masses are not
even approximately the same experimentally. In the Evans unifed field theory
each spinor is governed by the wave equation, for example:

(� + kT )

[
u
d

]
= 0 (12.12)

for the two quark model, and

(� + kT )




u
d
s



 = 0 (12.13)

for the three quark model and so on up to the six quark model:

(� + kT )




u
d
s
c
t
b




= 0. (12.14)

Thus, in the Evans unified field theory, there is gravitational interaction be-
tween quarks inside an elementary particle, or between quarks in two different
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elementary particles. This occurs in addition to the interaction between quarks
mediated by gluons. Similarly, there is gravitational interaction between elec-
trons in the Evans unified field theory in addition to the interaction mediated
by photons. In the presence of gravitational interaction:

kT 6= m2c2

~2
. (12.15)

In the absence of gravitational interaction Eq.(12.1) applies. The problem at
hand is therefore simplified if we neglect gravitational interaction to one of
interaction between quarks and gluons. In the standard model the SU(3) quark
color symmetry (Section 12.3) is considered to be exact, and the quark color
spinor is [1]:

ψ =




R
W
B


 . (12.16)

This three spinor plays a role analogous to right and left spin in the Pauli
spinors of the right and left electrons, and is introduced following considerations
[1] similar to the Pauli exclusion principle for electrons. The gluon field in
the standard model is the radiated field of SU(3) symmetry that mediates the
strong nuclear interaction. The gauge potential Aa

µ of the gluon field has eight
components. In the Evans field theory each component of Aa

µ obeys the Evans
wave equation:

(� + kT )Aa
µ = 0. (12.17)

Therefore the interaction of a gluon with a quark is described by a momentum
exchange process in the Evans field theory, in which each type of gluon has mass
as described by Eq.(12.17). In the special relativistic limit (12.1), Eq.(12.17)
reduces to: (

� +
m2

gc
2

~2

)
Aa

µ = 0 (12.18)

where mg is the mass of a given gluon. In the standard model there is no gluon
mass, and no photon mass, in contradiction to the observation of photon mass
in the Eddington and NASA Cassini experiments, precise to one part in one
hundred thousand. The absence of photon and gluon mass from the standard
model is therefore another major conceptual problem for that model.

The free quark flavors in the absence of gravitational interaction are de-
scribed by: (

� +
m2

qc
2

~2

)
ψ = 0 (12.19)

and the free gluons in the absence of gravitational interaction by:

(
� +

m2
gc

2

~2

)
A = 0. (12.20)
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In Eq.(12.19) an exact symmetry is used in the Evans field theory, as required by
basic group theory and in contrast to the meaningless approximate symmetries
of the standard model. In other words the six quarks flavors have the same
mass in the free state.

Eqs.(12.19) and (12.20) can be factorized [3]– [18] into first order differential
equations:

(iγa∂a −mqc/~)ψ = 0 (12.21)

(iγa∂a −mgc/~)A = 0 (12.22)

where γa is the Dirac matrix.
The momentum exchange between any type of quark and any type of gluon

is given through a minimal prescription as follows:

(i~γa (∂a − igAa) −mqc)ψ = 0 (12.23)

(i~γa (∂a + igAa) −mgc)A = 0. (12.24)

Here g is a coupling parameter analogous to the e used in describing momen-
tum exchange between photon and electron in quantum electrodynamics in the
Evans field theory [3]– [18]. Thus Eqs.(12.23) and (12.24) describe quantum
chromodynamics in the Evans unified field theory in the absence of any con-
sideration of gravitational interaction. There are six quark flavors, three quark
colors and eight types of gluon in general, so there is a total of 6× 3× 8 = 144
different coupling parameters g in general. The effective mass generated in each
type of interaction is defined by [3]– [18]:

kT =
(mqc

~

)2

eff
=
(mqc

~

)2

+
gmqc

~2
γa (Aa +A∗

a) +
g2

~2
A∗

aA
a. (12.25)

The experimental observation of apparently different confined quark masses is
therefore explained generically by Eq.(12.25), the apparently different confined
quark masses of the standard model being in Evans field theory a well defined
combination of free quark and free gluon mass and appropriate coupling parame-
ter g. In various elementary particles there are different quark combinations [1].
Baryons are bound states of three quarks, and mesons are quark anti-quark
states. Baryons participate in the strong interactions and have overall half inte-
gral spins and so interaction between baryons is mediated by gluons according
to Eqs.(12.23) and (12.24). In the standard model basic concepts such as the
degeneracy of multiplets of hadrons are based on the approximate quark de-
generacy. Hadrons participate in the strong interaction and so the interaction
between hadrons takes place through gluon exchange. A given representation of
SU(3) for example contains several representations of SU(2) [1], and from this
it is concluded in the standard model that an SU(3) supermultiplet contains
several isospin multiplets of different strangeness S. This group theoretical rea-
soning is the basis of for example the Gell-Mann Nishijima relation used in the
GWS theory of the standard model. However, the fundamental but approxi-
mate quark flavor degeneracy, as we have argued, is meaningless, bringing into
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question all of these basic concepts of the standard model. In the Evans field
theory an exact quark flavor degeneracy is used, and this is self consistent, as
well as objective, physics.

12.3 Quark Color Symmetry

The quark color symmetry of R,W and B was introduced to address the problem
posed by Fermi Dirac statistics [1]. In contrast to the flavor symmetry the color
symmetry is exact. The relevant spinor is:

ψ =




uR

uW

uB


 etc. (12.26)

and has SU(3) symmetry. Therefore for each quark flavor there are three colors.
The standard model therefore uses a mixture of approximate and exact symme-
tries for flavor and color wavefunctions. In the Evans field theory in contrast,
exact group theoretical symmetries are used throughout, the theory is generally
covariant throughout, and the basic contradictions between quantum mechan-
ics and general relativity are removed through the use of massive photons and
gluons and a geometrically based approach to the whole of physics.
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