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ABSTRACT

[t is shown that antisymmetry 1s rigorously conserved in ECE2 electrostatics
and magnetostatics. The electric field strength E and magnetic flux density B are interpreied
as having contributions from the material or circuit and from the interaction of the circuit
with spacetime, the vacuum or aether. The four current density of spacetime is defined,
together with the secondary magnetostatic field of electrostatics and the secondary
electrostatic field of magnetostatics. The spin connection four vector is defined for

electrostatics and magnetostatics.
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1. INTRODUCTION

In recent papers of this series {1 - 12} it h-as been shown that conservation of
antisymmetry is a fundamental law of physics, as fundamental as conservation of energy
momentum and charge current density for example. It has also been shown that the field
equations of electrodynamics, gravitation and fluid dynamics are determined by Cartan
geometry within the context of ECE2 generally covariant unified field theory. The same
foundational antisymmetry laws apply in all three subject areas, unified into one set of
equations based on geometry. Therefore it is concluded that conservation of antisymmetry
applies to the whole of physics and is a foundational law of physics.

This paper is a short synopsis of detailed calculations given the notes
accompanying UFT387 on www.aias.us. Note 387(1) defines the vacuum four current in
terms of the spin connection four vector, Note 387(2) develops electrostatics and
magnetostatics and Note 387(3) interprets the electric field strengthli_and magnetic flux
density B in terms of a materieal or circuit component and a component due ot the interaction
of the circuit with spacetime (also given the appellations “vacuum”™ and “aether™).

Section 2 summarizes the main results of the notes, and Section 3 is a numerical

and graphical analysis.

2. INTERPRETATION AND CONSERVATION OF ANTISYMMETRY. ‘

Consider the electric field strength E and magnetic flux density B in ECE2 physics:
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Here + 1s the scalar potential A is the vector potential, and:
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The spin connection defines the E and B fields produced by the interaction with the vacuum.

The electrostatic field equations of ECE2 physics are:



where {0 1s the charge density and éa the vacuum permittivity. In electrostatics and

magnetostatics it 1s assumed that:
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where A is the electrostatic vector potential. This concept does not exist in the standard
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Maxwell Heaviside (MH) theory. It follows that:
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These are four scalar equations in four unknows: C)u) (—\7\, A-/, ﬁ Z- They can be solved
by FEM boundary value methods on a computer. This procedure gives G o and A . Having
found A for electrostatics, the spin connection for electrostatics is found by solving the

antisymmetry equations:
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This gives the complete spin connection four vector for any situation in electrostatics. The
vacuum can be mapped in this way.

The material scalar potential % for electrostatics is found from:
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where F is the charge density. Eq. ( '&3 ) can be evaluated by computer for any

experimental charge density. Knowing W, and A, the charge density can also be found
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The electrostatic field strength due to interaction with the vacuum can be found from:
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and the material or circuit field strength can be found from:
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The secondary magnetic flux density B of electrostatics is defined by:
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where A is the electrostatic vector potential computed from Egs. ( 1 ) and ( \ 8 ).

Magnetostatics in ECE2 physics is defined by:
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is the magnetic vector potential of the material or circuit and ] is the current density of the
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material or circuit. This magnetostatic current density defines a magnetostatic charge density
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\lising computational methods, the magnetic vector potential A of the material or circuit can

through the continuity equation:

be found for any experimentally observable current density of the circuit. The continuity
equation shows that there cannot be a current density without a moving charge density.
Having computed A, the spin connection vector for magnetostatics is computed

from the antisymmetry equations ( \q ) to ( 1\ ). The material or circuit magnetic flux
N >

density is:

—

and the magnetic flux density due to the interaction of the circuit with the vacuum is:
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The secondary electric field strength of ECE2 magnetostatics is:

E - —a,A —(35)
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where A is defined by Eq. ( ?7\ ). The secondary E field obeys the equattons:
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where the secondary charge density is defined by the continuity equation ( 59\ ) and can
be computed. Eqs. ( 5‘3 ) and ( 5—7 ) can be solved using FEM boundary value
methods in a manner that 1s exactly analogous to solving Eqgs. ( l—l ) and ( \8 ).

Finally the charge current four density generated by the interaction of circuit and

vacuum is: "5”(’\ <")Xm SUL L\,CQ \SQC}&M}
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where /A ° is the vacuum permeability.

S



Conservation of antisymmetry in ECE2
electrostatics and magnetostatics

M. W. Evans! H. Eckardt'
Civil List, A.LA.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
www.atomicprecision.com, www.upitec.org)

3 Computation and graphics

We continue examples of magnetostatics and elctrostatics and analyse the space-
time properties resulting from the antisymmetry laws.

3.1 Magnetic dipole field

The magnetic dipole field was already investigated in UFT386, including graph-
ics of the spin connection w and magnetic flux density B. Here we complete the
example with the secondary electric field arising from the magnetic flux density.
According to Eq. (35), the secondary electric field strength is given by

E = —woA (39)

with scalar spin connection wg and vector potential A of the circuit. wqg is a
quantity being unknown a priori and has to be determined from Eq. (17). From
(18) then follows a secondary electric charge density. Since Eq. (17),

V x (OJ()A) =0, (40)

is a vector equation, wgp has to be determined in a way so that all three com-
ponent equations are fulfilled. There is no general procedure for doing this. In
the case of the magnetic dipole field, we found three functions wq fulfilling this
condition, see Table 1. The three solutions differ in symmetry. Since the dipole
is rotationally symmetric around the Z axis, we expect that also the secondary
electric field should show up this property. The first example is asymmetric as
can be seen from the X and Y dependencies. The second example (graphed
in Fig. 1) shows circular field lines but the E field has directional changes on
the coordinate axes. The divergence vanishes despite the apparent divergences
on these axes. The third example has the desired full rotational geometry (Fig.
2). The spin connection of this case is graphed in Figs. 3 and 4 for the planes
Z =0and Z = 1. It has a cone form at the centre. When moving from the
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centre (Z # 0), a pole builds up at X =Y = 0. According to Table 1, there is
no secondary charge density.
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Table 1: Combinations of scalar spin connection, secondary electric field and
charge density for a magnetic dipole.

3.2 Electrostatic point charge

As a simple electrostatic example we consider the field of a point charge. We
can “guess” the vector potential and scalar spin connection so that the well
known central electric field comes out from Eq. (39):
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Evaluation of Egs. (19-21) then gives the vector spin connection
9 X
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The fields A, E and w are central fields and look very similar. The vector
potential has been graphed in Fig. 5 as an example. From the fields follows

VXA=wxA=0 (45)
i.e. there is no secondary magnetic field:

Bsecondary = 0. (46)
The charge density is zero everywhere in space because a point charge represents
a ¢ function with volume zero:

L _v.E=o0 (47)
€0
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Figure 1: Secondary E field of magnetic dipole, case 2 of Table 1.
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Figure 2: Secondary E field of magnetic dipole, case 3 of Table 1.



Figure 3: Spin connection wy of magnetic dipole, at plane Z = 0.

Figure 4: Spin connection wy of magnetic dipole, at plane Z = 1.
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Figure 5: A field of a point charge (similar to E and w).



ACKNOWLEDGMENTS

The British Government is thanked for a Civil List Pension and the staff of AIAS
and others for many interesting discussions. Dave Burleigh. CEO of Annexa Inc.. is thanked
for hosting ww.aias.us. site maintenance and feedback software and hardware maintenance.

Alex Hill is thanked for translation and broadcasting. and Robert Cheshire for broadcasting.

REFERENCES
{17 M. W, Evans. H. Eckardt, D. W. Lindstrom and S. J. Crothers. “ECE2 : The Second

Paradigm Shift” (open access on combined sites www.aias.us and www.upitec.com as

UFT366 and ePubli in prep.. translation by Alex Hill)

{2} M. W. Evans_ H. Eckardt. D. W. Lindstrom and S. J. Crothers. “The Principles of ECE™
(open access as UFT350 and Spanish section, ePubli. Berlin 2016. hardback, New
Generation. London. softback. translation by Alex Hill. Spanish section).

13! M. W. Evans. S. J. Crothers, H. Eckardt and K. Pendergast. “Criticisms of the Einstein
Field Equation™ (open access as UFT301. Cambridge International. 2010).

{4Y M. W. Evans. H. Eckardt and D. W. Lindstrom. “Generally Covariant Unified Field
Theory™ (Abramis 2005 - 2011, in seven volumes softback. open access in relevant UFT
papers. combined sites).

{51 L. Felker. “The Evans Equations of Unified Field Theorv™ (Abramis 2007. open access as
UFT302. Spanish translation by Alex Hill).

16} H. Eckardt. “The ECE Engineering Model™ (Open access as UFT303. collected
equations). |

{7} M. W. Evans. “Collected Scientometrics (Open access as UFT307. New Generation

2015).



{8} M. W. Evans and L. B Crowell, “Classical and Quant(nn Electrodynamics and the B(3)
Field” (World Scientific 2001, Open Access Omnia Opera Section of www.aias.us).

{94 M. W. Evans and S. Kielich (eds.), “Modern Nonlinear Optics™ (Wiley Interscience, New
York. 1992.1993.1997. 2001) in two editions and six volumes.

{10} M. W. Evans and J. - P. Vigier, “The Enigmatic Photon”. (Kluwer. 1994 to 2002. in five
volumes hardback and sottback. open access Omnia Opera Section of www.aias.us ).

111! M. W. Evans. Ed., “Definitive Refutations of the Einsteinian General Relativity™
(Cambridge International 2012, open access on combined sites).

f12y M .W. Evans and A. A. Hasanein, “The Photomagneton in Quantum Field Theory™

(World Scientific, 1994).



