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ABSTRACT 

It is shown using two independent methods that ECE2 theory produces from 

spacetime (aether or vacuum) peaks of infinite amplitude in electric field strength. The first 

method uses Euler Bernoulli resonance to amplify the well known vacuum fluctuations of 

lamb shift theory and the second method shows that such peaks of infinite amplitude can be 

produced from a tensor Taylor expansion. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 49} a. Tensor Taylor series method was used 

to describe the spatially averaged influence of spacetime, the vacuum or aether, on a well 

designed circuit. Spatial averages were computed to order six and further using computer 

algebra. In the immediately preceding paper (UFT398 on www.aias.us) higher order 

corrections to the Lamb shift were calculated using this new method, based on computer 

algebra, and it was shown that the lamb shift can be considerably affected if the radiation 

volume becomes small. In Section 2 of this paper it is shown that infinite peaks in electric 

field strength can be engineered from the vacuum. Two methods are used, one based on Euler 

Bernoulli resonance, and the other on a tensor Taylor series method applied to the definition 

of electric field strength E in ECE2 theory. 

This paper is a short synopsis of detailed calculations described in the notes 

accompanying UFT399 on www.aias.us. Note 399(1) describes the Euler Bernoulli method 

and Notes 399(2) and 399(3) are used to show that infinite peaks can emerge from the 

fundamental definition of the electric field strength as described in Section 3. The latter is a 

summary of computational methods and graphics. 

2. PEAKS OF ELECTRIC FIELD STRENGTH E FROM THE VACUUM 

Consider the well known assumption of Lamb shift theory that vacuum 

fluctuations are described by: 
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where is a characteristic angular frequency. The force is defined by: 
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However, in ECE2 theory: 

where ~ is the spin connection vector and r 6 is the electromagnetic potential in the 
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and: 

where the constant A is defined as: - -(~ 

whose X component is: 

and similarly for Y and Z. 

For Euler Bernoulli resonance to occur Eq. ( ~ ) has to be in the format: 
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It follows that: 

a solution of which is: 
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From this solution ~ is pure imaginary · so Its real and physical part . 0 IS zero. So Eq. ( -, ) 

becomes: 

The usual Euler Bernoulli structure is: 

and at: 



the potential becomes infinite. This is Euler Bernoulli resonance. 

Eq. ( \t ) reduces to Eq. ( \1 ) when: 
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so Euler Bernoulli resonance occurs at: 
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and infinite potential energy is taken from the vacuum. The driving force for the Euler 

Bernoulli resonance is the well known vacuum fluctuation of the lamb shift theory. In Section 

3 it is shown how the spin connection can be engineered for Euler Bernoulli resonance of this 

type. 

As described in immediately preceding papers the experimentally observed 

electromagnetic potential is: 

where f(s_) is the potential in the absence of the vacuum and ~OC.) is the vacuum 

potential: 

Using a tensorial Taylor series expansion and isotropic averaging: - (C) 
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Similarly, the vacuum electric field strength is: 



It follows that: 
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and similarly for the Y and Z components. 
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The ratio ( .> \ ) eliminates ( ~~ • ~ i_ '> , so it does not have to be 

calculated. 

In ECE2 theory { 1 - 41}: 
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in which: 

and: 

with similar expressions for the Y and Z components. Now use the Poisson equation: 
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where f is the material charge density and to is the vacuum permittivity, and f 
is the potential in the absence of the vacuum. The highly developed methods of solution of 

the Poisson equation { 1 - 41} can be used to compute 1 for any given charge density. 

Finally: 

can be found, and the three spin connection components exemplified by Eq. ( >:fo ). 

and: 

In Section 3 it is shown that solutions given by this method can produce infinite 
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and gives the general using computer algebra. 

3. SOLUTIONS AND NUMERICAL ANALYSIS 
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3 Solutions and numerical analysis

3.1 Energy by Euler-Bernoulli resonance

Extending the calculation of the Euler-Bernoulli resonance in section 2, we start
with Eq. (12):

∂2ωX

∂t2
= ωXω

2
1 (41)

where ωX is the X component of the spin connection and ω1 is a constant
defined in (10). A real solution of this differential equation is

ωX = ω0X exp(−ω1t+ kX) (42)

with a constant ω0X . Inserting this into Eq. (9) gives

∂φ20
∂t2

− 2ω1
∂φ0
∂t

+ ω1
2φ0 =

Ax

ω0X
exp(ω1t− iω0t− kX). (43)

This differential equation can be solved for φ0, giving

φ0(t) = (c1 + c2t) exp(ω1t) −
AX

ω2
0ω0X

exp(ω1t− iω0t− kX) (44)

with integration constants c1 and c2. Even with both constants being zero, this
is an exponentially growing function in t. The term kX in (42) can even be
omitted to remove any space dependence. Then the solution of (43) is

φ0(t) = (c1 + c2t) exp(ω1t) −
AX

ω2
0ω0X

exp(ω1t− iω0t). (45)

This means that a time-oscillating vacuum field (5),

E(vac) =
m

e
ω2
0 δr(0) exp(−iω0t), (46)

leads to an extra potential in the Lamb shift volume growing over all limits.
This is an example for converting spacetime curvature to energy.
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3.2 Energy from a tensor Taylor expansion

We develop an example for the method based on the Taylor expansion of terms
in the Lamb shift vacuum as presented in Eqs. (21-40). We assume a vacuum
charge density oscillating in space on the X axis of a coordinate system:

ρ(X) = ρ0 cos(kX). (47)

The Poisson equation

∂2φ

∂X2
= −ρ0

ε0
(48)

then has the solution

φ =
ρ0 cos(kX)

ε0k2
+ c1 + c2X (49)

with integration constants c1 and c2. The corresponding electric field strength
is

EX = − ∂φ

∂X
=
ρ0 sin(kX)

ε0k
− c2. (50)

From Eqs. (39,40) follows for the X component of the spin connection:

ωX =
EX(vac)

φ(vac)
=
EX(vac)(2) + EX(vac)(4) + EX(vac)(6) + ...

φ(vac)(2) + φ(vac)(4) + φ(vac)(6) + ...
(51)

where EX(vac) and φ(vac) are given by Eqs. (29) and (30). In our case all even
(and odd) derivatives of EX and φ are of the form

∂nEX

∂Xn
= an sin(kX) (52)

and

∂nφ

∂Xn
= bn cos(kX) (53)

with coefficients bn = k an so that insertion of (29,30) into (51) leads to the
same factor sum of < δr · δr > in the numerator and denominator. Therefore
the spin connection expression can be reduced to he simple result

ωX = k tan(kX) (54)

which holds for alle degrees of approximation. Since the tangent function has
poles at multiples of π/2, there are infinities of ωx for kX = nπ/2. Infinite
energy can be extracted at these points in the Lamb shift volume.
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